The jed Editor

Contents
1 Introduction 3
2 Starting JED 3

3 Emulating Other Editors 4
3.1 Emacs Emulation e e
3.2 EDTEMUIAtioON e e e e e

3.3 Wordstar Emulation L e e e
4 Backup and Auto-save Files 4
5 Status line and Windows 5

6 Mini-Buffer 5
6.1 Command Line Completion e e
6.2 FileNames

6.3 Buffer Name and File Name Completion

7 Basic Editing 7
7.1 UNdO . .
7.2 Marking Text (Pointand Mark) e
7.3 Tab ISSUES.
7.4 Searching
7.5 Rectangles e
76 SOrtiNg. o o e

The JED Editor 2

8

10

11

12

13

14

15

16

17

18

Modes 10
8.1 WrapMode 10
Formatting paragraphs 10
8.2 Smart QUOLES e 11
8.3 CMode 11
8.4 FortranMode 11
Keyboard Macros 11
Shells and Shell Commands 12
Getting Help 12
Editing Binary Files 12
Dired— the Directory editor 13
Customization 13
14.1 Setting Keys e e 13
14.2 Predefined Variables e 14
Eight Bit Clean Issues 14
15.1 Displaying Characters withthe HighBitSet 14
15.2 Inputting Characters with the hightbitSet. o 15
15.3 Upper Case - Lower Case CONVEISIONS v o v vt vt e et e e e e e e e e 15
Miscellaneous 16
16.1 AbortCharacter 16
16.2 InputTranslation. e 16
16.3 Display Sizes 16
xjed 16
17.1 RESOUICES . . . o o o ot e e e e e e e e e e 17
17.2 Mouse USage o o e e e 18
17.3 EDT emulationunder LinUx. 18
Using a mouse with jed and xjed 18
18.1 Native MOUSE SUPPOIt o o e 19
Clickinginawindow e 19
Clickingonawindow statusline 19
Tipsforusingthe mouse L 19
18.2 XTerm Event SUPPOIt o o e e 20
Mouse Usage e 20

CUt/Paste TIPS o o o e 20

The JED Editor 3

19 Frequently Asked Questions 20
Howdo lobtained? 20
How do ldisablged's Cmode? e 21
WhatisCmode? 21
Howdo lturnonwrap modeorturnitoff? L 22
What is the difference between internal and intrinsic functions? oL 22
Sometimes during screen updafes, pauses. Whyisthis? oo Lo 22
How do | getjed to recognize Control-Sand Control-Q?. 23
CanlbindtheAlt keysonthe PC? e 23
How do | find out what characters a particular key generates? 23
jed scrolls slow on my WizBang-X-Super-Terminal. What can I do aboutit? 24
Howdolgetalistof functions? e 24
How can luseedt.sl withjed386.exe 2 24

How do | set customtab stopsj@d? 24

The JED Editor 4

Questo documento € un’elaborazione della documentazione origirjat din editor emacs-like disponibile su piattaforme
UNIX, MS-DOS e VMS (esiste anchged, una versione per X11).

1 Introduction

This document presents some basic information that users should know in order jel wdtectively. Any questions,
comments, or bug reports, should be email-ed to the author. Please be sure to include the version number. To be notified of
future releases géd, email to the address below and your email address will Begul on thernouncement list. The email

address is:

davis@space.mit.edu

jed is primarily a text editor; however, it can also edit binary files (see the section on editing binary files). As gedsult,

may edit lines of arbitrary length (actually this depends upon the size of an integer). It is capable of editing arbitrarily large
buffers as long as there is enough memory for the buffer as well as the overhead involved. This editor employs a linked list
representation; hence, the overhead can be quite high.

2 Starting JED

Normally,jed is started as
jed <file name>

However,jed also takes the switches defined in the following table:

-batch run JED in batch mode. This is a non-interactive mode
-n do notloaded.rc (.jedrc)file

-g <n> goto line <n> in buffer

-l <file> load <file> as S-Lang code

-f <function> execute S-Lang function named <function>

-s <string> search forward for <string>

-2 split window

-i <file> insert <file> into current buffer

For example, the command line:
jed slang.c -g 1012 -s error -2 file.c -f eob

will start upjed, read in the fileslang.c , goto line 1012 oklang.c and start searching for the striegor , split the
window, read irfile.c and goto the end of the file.

If the -batch parameter is used, it must be the first parameter. Similarly, ifs used, it must also be the first parameter
unless used with thebatch parameter in which case it must the secomeld should only be run in batch mode when

non—interactive operation is desired. For examjad,is distributed with a filemkdoc.sl , that contains S—Lang code to

produce a help file for functions and variables. In fact, the helgddefuns.hlp was created by entering

jed -batch -n -l mkdoc.sl

at the command line.

Now suppose that you want to read in a file with the name of one of the switche&, sklpw can this be done? The answer
depends upon the operating system. For Unix, instegetlof2 , usejed ./-2 ;for VMS, usejed []-2 . The case for
MS-DOS is similar to Unix except that one must use the backslash.

Oncejed has loaded the startup fifgte.sl , it will try to load the user’s personal initialization file. It first looks in the
directory pointed to by the environment variadEED_HOMEIf that fails, it then searches tHéOMHlirectory and upon
failure simply loads the one suppliedd&D_LIBRARY.

The name of the user initialization file variascording to the operating system. On Unix systems this file must be called
Jjedrc while on VMS and MSDOS, it goes by the nafjeel.rc . For VMS systems, thelOMHlirectory corresponds to
the SYS$LOGINIogical name while for the other two systems, it corresponds tbitBkIEEnvironment variable.

The purpose of this file is to allow an individual user to tajkxt to his or her personal taste. Most likely, this will involve
choosing an initial set of key-bindings, setting some variables, and so on.

The JED Editor 5

3 Emulating Other Editors

jed’s ability to create new functions using the S—Lang programming language as well as allowing the user to choose key
bindings, makes the emulation of other editors possible. Currgatlyprovides reasonable emulation of the Emacs, EDT,
and Wordstar editors.

3.1 Emacs Emulation
Emacs Emulation is provided by ti&elLangcode inemacs.sl . The basic functionality of Emacs is emulated; most Emacs
users should have no problem wjdu. To enable Emacs emulationjied, make sure that the line

evalfile ("emacs"); pop ():

isinyourjed.rc (.jedrc) startup file.jed is distributed with this line already present in the defgadtrc file.

3.2 EDT Emulation

For EDT emulationgdt.sl must be loaded. This is accomplished by ensuring that the line
evalfile ("edt"); pop ();

is in present in thged.rc (.jedrc) Startup File. jed is distributed with EDT emulation enabled on VMS and Unix
systems but the above line is commented out irfjedec file on MS-DOS systems.

This emulation provides a near identical emulation of the EDT keypad key commands. In addition, the smaller keypad on
the newer DEC terminals is also setup. It is possible to have both EDT and Emacs emulation at the same time. The only
restriction is thabmacs.sl must be loaded beforedt.sl is loaded.

One minor difference betweged’'s EDT emulation and the real EDT concerns @igl-H key. EDT normally binds this
to move the cursor to the beginning of the line. Howejexl, uses it as a help key. Nevertheless, it is possible to re-bind it.
See the section on re-binding keys as well as theefites|] for hints. Alternatively, simply put

unsetkey ("‘H"); setkey ("bol", ""H");

inthejed.rc startup file afteedt.sl isloaded. Keep in mind that ti@trl-H key will no longer function as a help key
if this is done.

EDT emulation for PCs only work with the enhanced keyboard. W4d#rsl is loaded, a variablBlUMLOCK_IS_GOLD

is set which instructged to interpret the Num-Lock key on the square numeric keypad to function as the EDT GOLD key. In
fact, this keypad should behave exactly like the keypad on VTxxx terminals. The only other problem that remains concerns
the + key on the PC keypad. This key occupies two VTxxx key positions, the minus and the comma (delete word and
character) keys. Thus a decision had to be made about which key to emulate. | cheseytte return the characteEsc

O | whichjed maps to the delete character function. This may be changed to the delete word function if you prefer. See the
file edt.sl for details.

TheGOLBGOLLkey combination toggles the keypad between application and numeric states. On the PC, thisis not possible.
Instead, the PE1 key has been instructed to perform this task.

3.3 Wordstar Emulation

wordstar.sl contains thé&s-Lang code forjed’'s Wordstar emulation. Adding the line
evalfile ("wordstar"); pop ();

toyourjed.rc (.jedrc) startup file will enablged’s Wordstar emulation.

4 Backup and Auto-save Files

On UNIX and MS-DOS systemged creates backup files by appending aharacter to the filename. The VMS operating
system handles backup files itsgéfd periodically auto-saves its buffers. On UNIX and MS-DOS, auto-save files are prefixed
with the pound sigrt. On VMS, they are prefixed with $. The auto-save interval may be changed by setting the variable

The JED Editor 6

MAX_HITSto the desired value. The default is 300 “hits” on the buffer. A “hit” is defined as a key which MAY change the
state of the buffer. Cursor movement keys do not cause hits on the buffer.

Like many ofjed’s features, the names of auto-save and backup files can be controlled by the user.siteeslile defines

two functionsmake_backup_filename , andmake_autosave_filename that generate the file names described in

the previous paragraph. Like all S-Lang functions, these functions may be overloaded and replaced with different ones. See
also information aboutind_file_hook in the section on hooks.

On UNIX systemsjed catches most signals and tries to auto-save its buffers in the event of a crash or if the user accidently
disconnects from the systel8IGHUBP).

If an auto-save file exists and you is desire to recover data from the auto-save file, use the figocti@n_file

Whenevetjed finds a file, it checks to see if an auto-save file exists as well as the file’s date. If the dates are such that the
auto-save file is more recejgd will display a message in the mini-buffer alerting the user of this fact and that the function
recover_file should be considered.

5 Status line and Windows

jed supports multiple windows. Each window may contain the same buffer or different buffers. A status line is displayed
immediately below each window. The status line contains information such gedhersion number, the buffer name,
“mode”, etc. Please beware of the following indicators:

** buffer has been modified since last save
%% buffer is read only
m Mark set indicator. This means a region is being defined
d File changed on disk indicator. This indicates that the file associated
with the buffer is newer than the buffer itself
S spot pushed indicator
+ Undo is enabled for the buffer
[Macro] A macro is being defined
[Narrow] Buffer is narrowed to a region of LINES
6 Mini-Buffer

The Mini-Buffer consists of a single line located at the bottom of the screen. Much of the dialog between the jsér and
takes place in this buffer. For example, when you search for a sjeidgyill prompt you for the string in the Mini-Buffer.

The Mini-Buffer also provides a direct link to ti& Lang interpreter. To access the interpreter, pil&s$X Esc and the
S-Lang> prompt will appear in the Mini-Buffer. Enter any valgtL ang expression for evaluation by the interpreter.

It is possible to recall data previously entered into the Mini-Buffer by using the up and down arrow keys. This makes it
possible to use and edit previous expressions in a convenient and efficient manner.

6.1 Command Line Completion

Thejed editor has several hundred built—in functions as well as many more written Brtlaag extension language. Many

of these functions are bound to keys and many are not. It is simply unreasonable to require the user to remember if a function
is bound to a key or not and, if it is, to remember the key to which it is bound. This is especially true of those functions that
are bound but rarely used. More often than not, one simply forgets the exact name or spelling of a function and requires a little
help. For this reasorjed supports command line completion in the mini-buffer. This function, cadledcs_escape_x

is bound to the kefsc X. This is one binding that must be remembered!

As an example, suppose that you are editing several buffers and you wish to insert the contents of one buffer into the current
buffer. The function that does this is calletsert_buffer and has no default key-binding. PresskEgr X produces

the promptM-x. This prompt, borrowed from the Emacs editor, simply meansEkat X was pressed. Now tyga and

hit the space bar or thEab key. In this context (completion context) the space bar and #iewill expand the string in the
Mini-Buffer up until it is no longer unique. In this casasert_file andinsert_buffer are only the two functions

that start within . Hence,in will expand toinsert_ at which point it becomes necessary to enter more information to
uniquely specify the desired function. However, in a completion context, the space bar also has a special property that enables

The JED Editor 7

the user to cycle among the possible completions. For this example, hitting the space bar twice consecutively will produce
the stringinsert_file and hitting it again produces the desired stiimgert_buffer

The role of the space bar in completion is a point where Emacgeahdiffer. Emacs will pop up a buffer of possible
completions bujed expects the user to press the space bar to cycle among them. Both have there pros and cons. Frequently,
one sees messages on the Usenet newsgnougemacs.help from Emacs users asking for the kind of completjed

employs.

6.2 File Names

jed takes every file name and “expands it” according to a set of rules which vary according to the Operating System. For
concreteness, considigd running under MS-DOS. Suppose the user reads a new file into the editor Viadhfle
command which emacs binds@irl-X Ctrl-F . Then the following might be displayed in the mini-buffer:

Find File: C\JED\SLANG\

Herejed is prompting for a file name in the directokyED\SLANG on diskC:. However, suppose the user wants to
get the fileC:\JED\SRC\VIDEO.C . Then the following responses produce equivalent filenames yeldegxpands them
internally:

Find File: C:\JED\src\video.c
Find File: C:\JED\SLANG\..\src\video.c
Find File: C:\JED\SLANG\../src/video.c

Note that the on MS-DOS systenjsd replaces thé with a\ and that case is not important. Now suppose you wish to get
the fileVIDEO.C from diskA: . The following are also valid:

Find File: A:\video.c
Find File: A:video.c
Find File: C:\JED\SLANG\a:\video.c

In the last casejed is smart enough to figure out what is really meant. Although the above examples are for MS-DOS
systems, the rules also apply to Unix and VMS systems as well. The only change is the file name syntax. For example, on
VMS

sys$manager:[misc]dev$user:[davis.jedlvms.c
dev$user:[davis.jedlvms.c

become equivalent filenames upon expansion. For unix, the following are equivalent:

/userl/users/davis/jed/unix.c
{usr/local/src//userl/users/davis/jed/unix.c
{usr/local/src/~/jed/unix.c

Note the last example: the tilde charactalways expands into the usét®MHlirectory, in this case tluserl/users/davis

Whenjed writes a buffer out to a file, it usually prompts for a file name in the minibuffer displaying the directory associated
with the current buffer. At this point a name can be appended to the directory string to form a valid file name or the user may
simply hit theRETkey. If the latter alternative is chosged simply writes the buffer to the file already associated with the
buffer. Once the buffer is written to a file, the buffer becomes attached to that file.

6.3 Buffer Name and File Name Completion

Whenjed prompts for a file name or a buffer name, the space bar an@iahekeys are special. Hitting th€ab key will

complete the name that is currently in the minibuffer up until it is no longer unique. At that point, you can either enter more
characters to complete the name or hit the space bar to cycle among the possible completions. The spacebar must be presse
at least twice to cycle among the completions.

On MSDOS and VMS, it is possible to use wildcard characters in the file name for completion purposes. For example,
entering®.c and hitting the space bar will cycle among file names matching Unfortunately, this feature is not available
on unix systems.

The JED Editor 8

7 Basic Editing

Editing withjed is pretty easy— most keys simply insert themselves. Movement around the buffer is usually done using the
arrow keys or page up and page down keysdfsl isloaded, the keypads on VTxxx terminals function as well. Here,
only the highlights are touched upon (cut/paste operations are not considered “highlights”). In the following, any character
prefixed by the® character denotes a Control character. On keyboards without an explicit Escagrkgy, will most

likely generate and Escape character.

A “prefix argument” to a command may be generated by first hittinggbe key, then entering the number followed by
pressing the desired key. Normally, the prefix argument is used simply for repetition. For example, to move to the right 40
characters, one would pregsc 4 0 followed immediately by the right arrow key. This illustrates the use of the repeat
argument for repetition. However, the prefix argument may be used in other ways as well. For example, to begin defining a
region, one would press ti@rl-@ key. This sets the mark and begins highlighting. Pressin@tHe@ key with a prefix
argument will abort the act of defining the region and to pop the mark.

The following list of useful keybindings assumes thatacs.sl has been loaded.

Ctrl-L Redraw screen

Ctrl-_ Undo (Control-underscore, al§€irl-X u)

Esc q Reformat paragraph (wrap mode). Used with a prefix argument. will justify the para-
graph as well.

Esc n narrow paragraph (wrap mode). Used with a prefix argument will justify the paragraph
as well.

Esc ; Make Language comment (Fortran and C)

Esc\ Trim whitespace around point

Esc ! Execute shell command

Esc $ Ispell word (unix)

Ctrl-X ? Show line/column information

‘ quoted_insert — insert next char as is (backquote key)

Esc s Center line

Esc u Upcase word

Esc d Downcase word

Esc ¢ Capitalize word

Esc x GetM-x minibuffer prompt with command completion

Ctrl-X Ctrl-B pop up a list of buffers

Ctrl-X Ctrl-C exit jed

Ctrl-X 0 Delete Current Window

Ctrl-X 1 One Window

Ctrl-X 2 Split Window

Ctrl-X o Other window

Ctrl-X b switch to buffer

Ctrl-X k kill buffer

Ctrl-X s save some buffers

Ctrl-X Esc GetS-Lang> prompt for interface to th&-Langinterpreter

Ctrl-z Sospendged (vedi nota sotto)

Esc . Find tag (unix ctags compatible)

Ctrl-@ Set Mark (Begin defining a region). Used with a prefix argument aborts the act of

defining the region and pops the Mark

(A differenza di XEmacsCtr-E non termina la sessione di editing, in modo da consentife di
accedere agevolmente alla funzione di end-of-line anche a chi non ha a disposizione unjlkeypad
come nelle tastiere Digital. Chi volesse uniformarsi alla definizione di XEmacs, dovra aggif§ingere
guesta riga nel proprigedrc

setkey("exit_jed", ""E");

{

Sotto VMS il comandcCtrl-Z permette di sospendere temporaneamente |'esecuzigeet dilla
successiva esecuzione del comajadb viene ripristinatala situazione precedente (in modo anglogo
a quanto avviene sotto unix, dove pero bisogna usare il comigngo

The JED Editor 9

7.1 Undo

One ofjed’s nicest features is the ability to undo nearly any change that occurs within a buffer at the touch of a key. If you
delete a word, you can undo it. If you delete 10 words in the middle of the buffer, move to the top of the buffer and randomly
make changes, you can undo all of that too.

By default, theundo function is bound to the ke€trl-_ (Ascii 31). Since some terminals are not capable of generating
this character, it is also bound to the key sequetitEX u

Due to the lack of virtual memory support on IBMPC systemsyiigo function is not enabled on every buffer. In particular,

itis not enabled for th&scratch* buffer. However, itis enabled for any buffer which is associated with a fite cAaracter

on the left hand side of the status line indicates that undo is enabled for the buffer. It is possible to enable undo for any buffer
by using thaoggle_undo function.

7.2 Marking Text (Point and Mark)

Many commands work on certain regions of text. A region is defined byPtiiet and theMark The Point is the
location of the current editing point or cursor position. THark is the location of a mark. The mark is set using the
set_mark_cmd which is bound tcCtrl-@ (Control-2 or Control-Space on some keyboards). When the mark

is set, themmark indicator will appear on the status line. This indicates that a region is being defined. Moving the cursor
(Point) defines the other end of a region. If the variablSHLIGHT is non-zerojed will highlight the region as it is
defined.

Even without highlighting, it is easy to see where the location of the mark is by usirextienge command which is

bound toCtrl-X Ctrl-X . This simply exchanges thHeoint and theMark . The region is still intact since it is defined
only by thePoint andMark . PressingCtrl-X Ctrl-X again restores the mark and Point back to their original locations.
Try it.

7.3 Tab Issues.

Strictly speakingjed uses only fixed column tabs whose size is determined by the value d#ABeariable. Setting the
TAByvariable to 0 causggd to not use tabs as whitespace and to display talré$. Please note that changing the tab
settings on the terminal will have no effect as fajeasis concerned. Th&ABvariable is local to each buffer allowing every
buffer to have its own tab setting. The variablaB_DEFAULTIs the tab setting that is given to all newly created buffers.
The default value for this variable is 8 which corresponds to eight column tabs.

jed is also able to “simulate” arbitrary tabs as well through the use of user defined tab stops. One simplygzEsXas
get theM-x prompt and entersdit_tab_stops . A window will pop open displaying the current tab settings. To add a
tab stop, simply place @in the appropriate column. Use the space bar to remove a tab stop.

Here an argument is presented in favor of simulated tabs over real tab stops. First, consider what a “tab” really is. A “tab”
in a file is nothing more than a character whose ASCII value is 9. For this reason, one also denotes*a t@Rirkd).

Unlike most other ASCII characters, the effect of the tab character is device dependent and is controlled through the device
tab settings. Hence, a file which displays one way on one device may look totally different on another device if the tab settings
do not correspond. For this reason, many people avoid tabs altogether and others the adopt “standard” of eight column tabs.
Even though people always argue about what the correct tab settings should be, it must be kept in mind that this is primarily
a human issue and not a machine issue.

On a device employing tab stops, a tab will cause the cursor to jump to the position of the next tab stop. Now consider
the effect of changing the tab settings. Assume that in one part of a document, text was entered using the first setting and
in another part, the second setting was used. When moving from the part of the document where the current tab setting is
appropriate to the part where the other tab setting was used will cause the document to look unformatted unless the appropriate
tab settings are restored. Wordprocessors store the tab settings in the file with the text so that the tabs may be dynamically
changed to eliminate such unwanted behavior. However, text editors sjeth & Emacs, EDT, EVE (TPU), etc, do not

store this information in the filejed avoids this problem by using simulated tabs. When using simulated tabs, tabs are
not really used at all. Rathged inserts the appropriate number of spaces to achieve the desired effect. This also has the
advantage of one being able to cut and paste from the part of a document using one tab setting to another part with a different
tab setting. This simple operation may lead to unwanted results on some wordprocessors as well as those text editors using
real tab stops.

The JED Editor 10

7.4 Searching

jed currently has two kinds of searches: ordinary searches and incremental searches. Both types of searches have forwarc
and backward versions. The actual functions for binding purposes are:

isearch_forward Ctrl-F
isearch_backward Ctrl-B

[Dato che jed pud venire utilzzato su teminali non grafici chetilizzano il protocoll
XON/XOFF, Ctrl-S e Ctrl-R non hanno il binding tradizionale diearch_forward e
search_backward . Chi volesse ripristinare questi binding deve aggiungere queste righje nel
proprio.jedrc
setkey("search_forward", ""S");
setkey("search_backward", ""R");

There is also theccur function which finds all occurrences of a single word (string). This function has no backwards
version. By default it is not bound to any keys, so to useétur must be entered at thd-x prompt Esc X) or one is
always free to bind it to a key.

In the following only the incremental search is discussed.

As the name suggests, an incremental search performs a search incrementally. That is, as you enter the search string, th
editor begins searching right away. For example, suppose you wish to search for thegteng As soon as the letter is

entered into the incremental search prorjedt,will search for the first occurrence af Then as soon as tigeis enteredjed

will search from the current point for the striag, etc. This way, one is able to quickly locate the desired string with only a
minimal amount of information.

The search is terminated with tEater key.

Finally, theDELKkey (Ctrl-?) is used to erase the last character entered at the search prompt. In addition to erasing the last
character of the search strirjgd will return back to the location of the previous match. Erasing all characters will cause the
editor to return to the place where the search began. Like many things, this is one of those that is easier to do than explain.
Feel free to play around with it.

7.5 Rectangles

jed has built-in support for the editing of rectangular regions of text. One corner of rectangle is defined by setting the mark
somewhere in the text. The Point (cursor location) defines the opposite corner of the rectangle.

Once a rectangle is defined, one may use the following functions:

kill_rect Delete text inside the rectangle saving the rectangle in the internal rectangle buffer.
n_rect Push all text in the rectangle to the right outside the rectangle
copy_rect Copy text inside the rectangle to the internal rectangle buffer
blank_rect Replace all text inside the rectangle by spaces
The functioninsert_rect inserts a previously killed or copied rectangle into the text at the Point.

These functions have no default binding and must be entered into the MiniBuffer by prEssing to produce théM-x
prompt.

7.6 Sorting

jed is capable of sorting a region of lines using the heapsort algorithm. The region is sorted alphabetically based upon the
ASCII values of the characters located within a user defined rectangle in the region. That is, the rectangle simply defines the
characters upon what the sort is based. Simply move to the top line of the region and set the mark on the top left corner of the
rectangle. Move to the bottom line and place the point at the position which defines the lower right corner of the rectangle.
PressEsc X to get theM-x prompt and entesort As as example, consider the following data:

Fruit: Quantity:
lemons 3
pears 37

peaches 175

The JED Editor 11

apples 200
oranges 56

To sort the data based upon the name, move the Point to the top left corner of the sorting rectangle. In this case, the Point
should be moved to thein the wordlemons . Set the mark. Now move to the lower right corner of the rectangle which is
immediately after the in oranges . Pressing=sc X and enteringort yields:

Fruit: Quantity:
apples 200
lemons 3
oranges 56
peaches 175
pears 37

Suppose that it is desired to sort by quantity instead. Looking at the original (unsorted) data, move the Point agds/o sp
before the8 on the line containintemons . The cursor should be right under thén Quantity . Set the mark. Now move
the Point to immediately afté&i6 on theoranges line and again predssc X and entesort . This yields the desired sort:

Fruit: Quantity:
lemons 3
pears 37
oranges 56
peaches 175
apples 200

8 Modes

jed supports two internal modes as well as user defined modes. The two internal modes consist of a “C” mode for C Language
programming and a “Wrap” mode for ordinary text editing. Examples of user defined modes are Fortran mode and DCL mode.

Online documentation is provided for nearly every mgetedefines. For help on the current mode, piess X and enter
describe_mode . A window will appear with a short description of the special features of the mode as well as a description
of the variables affecting the mode.

8.1 Wrap Mode

In this mode, text is wrapped at the column given by\#iRAR/ariable. The default is 78. The text does not wrap until the
cursor goes beyond the wrap column and a space is inserted.

Formatting paragraphs

Paragraph delimiters are: blank lines, lines that begin with either a percent cha¥ader backslash character This
definition is ideally suited for editingTeX documents. However, it is possible for the user to change this definition. See the
discussion of the hooks_paragraph_separator , in the section on hooks for explicit details on how to do this.

The paragraph is formatted according to the indentation of the current line. If the current line is indented, the paragraph will
be given the same indentation. The default binding for this functi&sés q .

In addition, a paragraph may be “narrowed” by treerow_paragraph function which is bound t&esc N by default.
This differs from the ordinaryormat_paragraph function described above in that the right margin is reduced by an
amount equal to the indentation of the current line. For example:

This paragraph is the result of using the
function “narrow_paragraph”. Note how the
right margin is less here than in the above
paragraph.

Finally, if either of these functions is called from the keyboard with a prefix argument, the paragraph will be justified as well.
For example, pressirgsc 1 Esc N on the previous paragraph yields:

The JED Editor 12

This paragraph is the result of using the

function “narrow_paragraph”. Note how the
right margin is less here than in the above
paragraph.
See the discussion &drmat_paragraph_hook in the section on hooks for details on how this is implemented.

8.2 Smart Quotes

You have probably noticed that many key words in this document are quoted in double quotes like “this is double quot-
ed” and ‘this is single quoted’. By default, the double quote key (") and single quote key (’) are bound to the function

text_smart_quote . With this binding and in wrap mode, the single quote key inserts a single quote with the “proper”
orientation and the double quote key inserts two single quotes of the “proper” direction. To turn this off, rebind the keys to
self_insert_cmd . Some modes already do this (e.g., EDT).

This brings up the question: if the double quote key is bourtebtb smart_quote then how does one insert the character

("? The most common way is to use theoted_insert function which, by default, is bound to the single backquote

(*) key. This is the same mechanism that is used to insert control characters. The other method is to use the fact that if the
preceding character is a backslashthe character simply self inserts. Again, this is ideal for writip @ocuments.

8.3 C Mode

C Mode facilitates the editing of C files. Much of the latter part of the development gétheditor was done using this
mode. This mode may be customized by a judicious choice of the vari@blB®DENTandC_BRACHs well as the bindings
of the curly brace key§ and} . Experiment to find what you like or write your own using tBd anginterface.

By default, theEnter key is bound to the functionewline_and_indent . This does what its name suggests: inserts
a newline and indents. Again, some modes may rebind this key. In addition, thé KeyandTab are also special in this
mode. TheTab key indents the current line and theand} keys insert themselves and reindent. If you do not like any of
these bindings, simply rebind the offending oneeétf_insert_cmd

Finally, the key sequendésc ; is bound to a function called_make_comment . This function makes and indents a C
comment to the column specified by the value of the vari@bl€omment_Column. If a comment is already present on the
line, itis indented.

8.4 Fortran Mode
Fortran Mode is written entirely i8-Langand is designed to facilitate the writing of Fortran programs. It features automatic
indentation of Fortran code as well as automatic placement of Fortran statement Labels.

In this mode, the key8-9 are bound to a functiofor_elebel which does the following:

1. Inserts the calling character (0-9) into the buffer.

2. If the character is preceded by only other digit characters, it assumes the character is for a label and moves it to the
appropriate position.
3. Reindents the line.

This function is very similar to the one Emacs uses for labels.

9 Keyboard Macros

jed is able to record a series of keystrokes from the terminal and replay them. The saved series of keystrokes is known as
a keyboard macro. To begin a keyboard macro, simply enter the begin keyboard macro key sequence which is bound to
Ctrl-X (if emacs.sl isloaded. To stop recording the keystrokes, e@GterX) . Then to “execute” the macro, press

Ctrl-X e . Please note that it is illegal to execute a macro while defining one and doing so generates an error. A macro can
be aborted at anytime by pressing ®&l-G key.

The JED Editor 13

One nice featurged includes is thenacro_query function. That is, while defining a macro, the key sequedtteX g

will causejed to issue the promgEnter String: in the minibuffer. Any string that is entered will be inserted into the
buffer and the process of defining the macro continues. Every time the macro is exgaitgil, prompt for a NEW string

to be inserted.

Any time an error is generated, the process of defining the macro is aborted as well as execution of the macro. This is very
useful and may be exploited often. For example, suppose you want to trim excess whitespace from the end of ALL lines in a
buffer. Let us also suppose that the number of lines in the buffer is less than 32000. Then consider the following keystrokes:

Ctrl-X ((begin macro)

Ctrl-E (goto end of line)
ESC (trim whitespace)
Down Arrow (go down one line)
Ctrl-X) (end macro)

Now the macro has been defined. So move to the top of the buffer and execute it 32000 times:

ESC < (top of buffer)
ESC 32000 (repeat next command 32000 times
Ctrl-X e (execute macro)

If the buffer has less than 32000 lines, the end of the buffer willdaemed and an error will be generated aborting the
execution of the macro.

10 Shells and Shell Commands

The default binding to execute a shell command and pump the output to a bulfsr i . jed will prompt for a command
line and spawn a subprocess for its execution.

Strictly speakingjed does not support interactive subprocesses. HowggimcludesS-Lang code that “emulates” such a
subprocess. It may invoked by typisgell at theM-x minibuffer prompt. A window will be created with a buffer named

shell attached to it. Any text entered at the system dependent shell prompt will be executed in a subprocess and the
result stuffed back in the shell buffer. Don't try to execute any commands which try to take over the keyboard or the screen or
something undesirable may happen. Examples of types of stupid commands are spawning other editors, logging in to remote
systems, et cetera. Evehdir is stupid since its effect is not permanent. That is,

> cd ..
> dir

will not do what might naively be expected. That is, the two commands above are not equivalent to the single cdimmand

11 Getting Help

jed’s help functions are bound ®©trl-H by default. For exampleCtrl-H C will show what function a key carries out,
Ctrl-H i willrun jed’s inforeaderCtrl-H f will give help on a particula-Langfunction, etc. However, some modes
may use th&€trl-H key for something else. For example, if EDT mode is in effect, t@#hH may be bound tdol
which causes the cursor to move to the beginning of the line. See the section on EDT for more information.

If jed is properly installed, this entire document is accessable from within the editorjediagnfo readerCtrl-H i will
loadinfo_mode allowing the user to browse the document as well as other “info” documents.

12 Editing Binary Files

jed may edit binary files as long as the proper precautions are taken. On IBMPC systems, this inubhgethesS-Lang
functionset_file_translation with an integer argument. If the argument is O, files are opened as text files; otherwise,
they are opened in binary mode. There is no need to call this function for other systems. However, beware of the user variable
ADD_NEWLINEwhich if non zero, a newline character will be appended to the file if the last character is not a newline
character. If you are going to edit binary files, it is probably a good idea to set this variable to zero.

The JED Editor 14

13 Dired— the Directory editor

In addition to editing filesjed is also able to rename and delete them as vj@dll's Dired mode allows one to do just this is
a simple and safe manner.

To run dired, simply presgsc X and entedired at the prompt.jed will load dired.sl and prompt for a directory
name. Once the directory is giveed will display a list files in the directory in a buffer namédired* . One may use
normal buffer movement keys to move around this buffer. To delete one or more files, dsketh® “tag” the files. This in
itself does not delete them; rather, it simply marks them for deleting. A capital ‘D’ will appear in the left margin to indicate
that a file has been tagged. Simply hit th&ey to untag a file. The delete key will also untag the previously tagged file.

To actually delete the tagged files, press the ‘x’ key. This action cgedds display a list of the tagged files in a separate
window and prompt the user for confirmation. Only when the proper confirmation is given, will the file be deleted.

Renaming a file is just as simple. Simply move to the line containg the name of the file that you wish to rename and hit the
‘r' key. jed will prompt for a filename or a directory name. If a directory is given, the file will be moved to the new directory

but will keep the name. However, for the operation to succeed, the file must be one the same file system. To rename tagged
files to a different directory residing on the same file system, usmit@y. This has the effect of moving the tagged file out

of the current directory to the new one.

One may also use tHekey to read the file indicated by the cursor position into a buffer for editing. If the file is a directory,
the directory will be used for dired operations. In addition, one may also usetthseimply “view” a file.

Finally, theg key will re-read the current directory and thend? keys provide some help.

14 Customization

To extended, it is necessary to become familiar with t8d_ang programming languag&-Lang not a standalone program-

ming language like C, Pascal, etc. Rather it is meant to be embedded into a C progra®aLdimgprogramming language

itself provides only arithmetic, looping, and branching constructs. In addition, it defines a few other primitive operations on
its data structures. It is up to the application to define other built-in operations tailored to the application. That is what has
been done for thzd editor. See the documestiang.txt for S-Lang basics as well as thjed Programmer’s Manual for
functionsied has added to the language. In any case, look at.ghe files for explicit examples.

For the most part, the average user will simply want to rebind some keys and change some variables (e.g., tab width). Here |
discuss setting keys and the predefined global variables.

14.1 Setting Keys

Defining a key to invoke a certain function is accomplished usingétieey function. This function takes two arguments:
the function to be executed and the key binding. For example, suppose that you want to bind@e-Rey to cause the
cursor to go to the beginning of the current line. Tée function that causes thisim®l (See thged Programmer’s Manual
for a complete list of functions). Putting the line:

setkey ("bol", ""A");

inthe startup filged.rc (.jedrc) file will perform the binding. HeréA consists of the two charactersandA whichjed
will interpret as the single charact€trl-A . For more examples, see either of Bieangfilesemacs.sl oredt.sl

The first argument to theetkey function may beany S-Langexpression. Well, almost any. The only restriction is that the
newline character cannot appear in the expression. For example, the line

setkey ("bol();skip_white ();", ""A");

defines theCtrl-A key such that when it is pressed, the editing point will move the beginning of the line and then skip
whitespace up to the first non-whitespace character on the line.

In addition to being able to define keys to execute functions, it is also possible to define a key to directly insert a string
of characters. For example, suppose that you want to define a key to insert thardtringin(int argc, char
**argv) whenever you press the k&gc m. This may be accomplished as follows:

setkey (" int main(int argc, char **argv)", "\em");

The JED Editor 15

Notice two things. First of all, the key sequeriEec m has been written a8em" where\e will be interpreted byjed

asEsc. The other salient feature is that the first argumergetkey |, the “function” argument, begins with a space. This

tells jed that it is not be interpreted as the name of a function; rather, the characters following the space are to be inserted
into the buffer. Omitting the space character would cgedéo execute a function callédt main(int argc, char

**argv) which would fail and generate an error.

Finally, it is possible to define a key to execute a series of keystrokes similar to a keyboard macro. This is done by prefixing
the “function” name with the@character. This instrucjed to interpret the characters following tt@haracter as characters
entered from the keyboard and execute any function that they are bound to. For example, consider the following key definition
which will generate a C language comment to comment out the current line of text. In C, this may be achieved by inserting
symbol"/*" at the beginning of the line and insertitty" at the end of the line. Hence, the sequence is clear (Emacs
keybindings):

1. Goto the beginning of the lin€trl-A or decimal™001"

2. Insert/* .
3. Goto end of the lineCtrl-E or decimal\005 .
4. Insert*/

To bind this sequence of steps to the key sequéisce ; , simply use
setkey("@\001/X\005*/", "\e;");

Again, the prefix@letsjed know that the remaining characters will carry out the functions they are currently bound to. Also
pay particular attention to the w&trl-A andCtrl-E have been written. Do not attempt to usethe representCtrl ”

It does not have the same meaning in the first argument tedtkey function as it does in the second argument. To have
control characters in the first argument, you must enter thenxgswherexyzis a three digit decimal number coinciding
with the ASCII value of the character. In this notation, ee character could have been written\@27 . See thés-Lang
Programmer’s Reference Manual for further discussion of this notation.

The setkey function sets a key in thglobal keymap from which all others are derived. It is also possible to use the
functionlocal_setkey which operates only upon the current keymap which may or may not gahal map.

14.2 Predefined Variables

jed includes some predefined variables which the user may change. By convention, predefined variables are in uppercase.
The variables which effect all modes include:

BLINK [1] if non-zero, blink matching parenthesis

TAB_DEFAULT [8] sets default tab setting for newly created buffers to specified number of columns
TAB Value of tab setting for current buffer

ADD_NEWLINE [1] adds newline to end of file if needed when writing it out to the disk
META_CHAR [-1] prefix for chars with high bit set (see section on eight bit clean issues for details)
DISPLAY_EIGHT_BIT see section on eight bit clean issues

COLOR [23] IBMPC background color (sged.rc for meaning)

LINENUMBERS [0] if1, show current line number on status line

WANT_EOB [0] if1, [EOB]denotes end of buffer

TERM_CANNOT_INSERT [0] if1, do not put the terminal in insert mode when writing to the screen
IGNORE_BEEP [0] donot beep the terminal when signalling errors

In addition to the above, there are variables which affect only certain modes. See the section on modes for details.

15 Eight Bit Clean Issues

15.1 Displaying Characters with the High Bit Set

There are several issues to consider here. The most important issue is hoyetbtgedisplay 8 bit characters in a “clean”
way. By “clean” | mean any character with the high bit set is sent to the display device as is. This is achieved by putting the
line:

The JED Editor 16

DISPLAY_EIGHT_BIT = 1,

inthejed.rc (.jedrc) startup file. European systems might want to put this in thaitiéesl for all users. The default
is 1 so unless its value has been changed, this step may not be necessary.

There is another issue. Suppose you want to display 8 bit characters with extended Ascii codes greater than or equal to some
value, say 160. This is done by puttiBgSPLAY_EIGHT_BIT = 160; . | believe that ISO Latin character sets assume
this. This is the default value for Unix and VMS systems.

15.2 Inputting Characters with the hight bit Set

Inputting characters with the high bit set irjenl is another issue. Hoyed interprets this bit is controlled by the variable
META_CHARWhat happens is this: Whéed reads a character from the input device with the high bit set, it:

1. Checks the value IETA_CHART this value is -1jed simply inserts the character into the buffer.

2. For any other value dfIETA_CHAI the range 0 to 255ed returns two 7-bit characters. The first character returned
is META_CHARself. The next character returned is the original character but with the high bit stripped.

The default value oMETA_CHARS -1 which means that whgad sees a character with the high bit g§et] leaves it as is.
Please note that a character with the high bit sedftnotbe the prefix character of a keymap. It can be a part of the keymap
but not the prefix.

Some systems only handle 7-bit character sequences and as gedswili,only see 7-bit characterged is still able to insert
anycharacter in the range 0-255 on a 7-bit system. This is done through the useobthd_insert function which, by

default, is bound to the backquote KeylIf the quoted_insert function is called with a digit argument (repeat argument),

the character with the value of the argument is inserted into the buffer. Operationally, dBsdiienters the extended Ascii

code and hits the backquote key. For example, to insert character 255 into the buffer, simply press the following five keys:
Esc 2 55 ‘.

15.3 Upper Case - Lower Case Conversions

The above discussion centers around input and output of characters with the high bit sgedHi@ats them internally is

another issue and new questions arise. For example, what is the uppercase equivalent of a character with ASCII code 231"
This may vary from language to language. Some languages even have characters whose uppercase equivalent correspond
multiple characters. Fged, the following assumptions have been made:

o Each character is only 8 bits.
¢ Each character has a unique uppercase equivalent.
¢ Each character has a unique lowercase equivalent.
It would be nice if a fourth assumption could be made:
¢ The value of the lowercase of a character is greater than or equal to its uppercase counterpart.

However, apparently this is not possible since most IBMPC character sets violate this assumption. jededoes not
assume it. Supposetis the upper case value of some character and supfisgts lower case value. Then to majee aware
of this fact and use it case conversions, it may be necessary to put a statement of the form:

define_case (X, Y);
in the startup file. For example, suppose 211 is the uppercase of 244. Then, the line
define_case (211, 244);

will make jed use this fact in operations involving the case of a character.

This has already been done for the ISO Latin 1 character set. See ike-fégin.sl for details. For MSDOS, this will

not work. Instead use the file®s437.sl anddos850.sl . By default,jed’s internal lookup tables are initialized to the

ISO Latin set for Unix and VMS systems and to the DOS 437 code page for the IBMPC. To change the defaults, it is only
necessary to load the appropriate file. For example, todoa850.s definitions, put

evalfile ("dos850"); pop ();

The JED Editor 17

in the startup file (e.gsite.sl). In addition to uppercase/lowercase information, these files also contain word definitions,
i.e., which characters constitute a “word”".

16 Miscellaneous

16.1 Abort Character

The abort characteCfrl-G by default) is special and should not be rebound. On the IBMPC, the keyboard interrupt 0x09
is hooked and a quit condition is signaled when it is pressed. For this reason, it should not be used in any keybindings. A
similar statement holds for the other systems.

This character may be changed using the fundtnabort_char Using this function affects all keymaps. For example,
putting the line

set_abort_char (30);

inyourjed.rc file will change the abort character from its current value to 30 whi€ltis”

16.2 Input Translation

By using the functioomap_input the user is able to remap characters input from the terminal bgfdiekeymap rou-

tines have a chance to act upon them. This is useful when it is difficult tiedeb see certain characters. For example,
consider theCtrl-S character. This character is especially notorious because many systems us€til-€hd for flow

control. Nevertheless Emacs usesl-S for searching. Short of rebinding all keys which involv€al-S how does

one work with functions that are bound to key sequences Birgs ? This is wheranap_input comes into play. The
map_input function requires two integer arguments which define how a given ascii character is to be mapped. Suppose
that you wish to substitut€trl-\ for Ctrl-S everywhere. The line

map_input (28, 19);

will do the trick. Here 28 is the ascii character@ifl-\ and 19 is the ascii character for t6érl-S

As another example, consider the case where the backspace key sen@bht a instead of théEL character Ctrl-?).
map_input (8, 127);

will map theCtrl-H (ascii 8) to the delete character (ascii 127).

16.3 Display Sizes

On VMS and unix systems, the screen size may be changed to either 80 or 132 columns by using the fu8@tards
w132 respectively. Simply enter the appropriate function name atttxeprompt in the minibuffer. The default binding for
access to the minibuffer Esc X. Most window systems, e.g., DECWindows, allow the window size to be changed. When
this is donejed should automatically adapt to the new size.

On the PC, at this time the screen size cannot be changedjedhikerunning. Instead it isecessary to exjed first then set
the display size and reryad.

17 xjed

These are some notes about usijeg, the X Window version ofed. It also mentions information about how to setup the
EDT emulation under Linux.

Suspendingjed is not allowed. If*Z is pressed, the window is raised if it is obscured, or lowered if it is totally visible.

The JED Editor 18

17.1 Resources

xjed recognizes the following resources:

Display [d] Display to run on

Name Instance name

Geometry Initial geometry specifications

font Default font to use

background [bg] Background color

foreground [fg] Forground color

Title name to be displayed on the title bar

fgStatus [fgs] foreground color of the xjed buffer status line

bgStatus [bgs] background color of the xjed buffer status line

fgRegion [far] foreground color of a region as defined by point and mark
bgRegion [bar] background color of a region as defined by point and mark
fgCursor [fgc] text cursor foreground color

bgCursor [bgc] text cursor background color

fgMouse [fgm] mouse cursor foreground color

bgMouse [bgm] mouse cursor background color

fgMessage [fgms] Foreground color for messages

bgMessage [bgms] Background color for messages

fgError [fger] Foreground color for error messages

bgError [bger] Background color for messages

These resources specify color syntax highlighting options:

fgOperator [fgop] forground color for operators (+, -, ety
bgOperator [bgop] background color for operators
fgNumber [fgnm] foreground color for numbers
bgNumber [bgnm] background color for numbers

fgString [fgst] foreground color for strings

bgString [bgst] background color for strings
fgComments [fgco] forground color for comments
bgComments [bgco] background color for comments
fgKeyword [fgkw] foreground color for keywords
bgKeyword [bgkw] background color for keywords
fgKeyword1 [fgkw1] foreground color for keywords1
bgKeywordl [bgkw1] background color for keywords1
fgDelimiter [fgde] foreground color for delimeters
bgDelimiter [bgde] background color for delimeters
fgPreprocess [fgpr] foreground color for preprocessor lines
bgPreprocess [bgpr] background color for preprocessor lines

Any of the above items may be specified on jexl command line. Quantities enclosed in square brackets may be used as a
shortform of their longer counterparts.

For example,
xjed -d space:0.0 -font 9x15 -bg blue -fg white
will start xjed using the server on amy using a white on blue 9x15 font.

Once the X Window resource specifications have been parsed, any remaining command line arguments are parsed as norme
jed command line arguments.

The easiest way to specify the resources is to make useXuefaults in your $SHOMHlirectory. Here is an example
entry forxjed:

xjed*Geometry: 80x36+100+100
xjed*font: 10x20
xjed*background: white
xjed*foreground: black
xjed*fgNumber: blue

The JED Editor 19

The first line specifies that the initial window size is 80 columns by 36 rows and that the top left corner of the window is to
be positioned at (100, 100). The second line specifies a fixed 10x20 font. The other two lines specify the foreground and
background colors of the window.

17.2 Mouse Usage

X_set_window_name Set the name of the window (for title bar)

X_warp_pointer Move mouse position to cursor position

X_insert_cutbuffer insert contents of system cut buffer in current buffer

X_copy_region_to_cutbuffer insert a region in system cutbuffer

x_set_keysym define an equivalence string to be returned when a function key is pressed
also,set_color() may be used to set colors of mouse, cursor, normal, region, and status line as well as the colors used

by the syntax highlighting routines. For example,
set_color ("mouse”, "red", "blue");

gives the mouse cursor a red forground with a blue background. The color values must be recognizable by the X server.

In addition to the usual keybindings, the X version binds:

Control-UP goto top of buffer
Control-DOWN goto end of buffer

Shift-UP move to top of window
Shift-DOWN move to bottom of window
Control-RIGHT Pan the window to the right
Control-LEFT Pan the window to the left
Shift-RIGHT skip to next word
Shift-LEFT skip to previous word

17.3 EDT emulation under Linux

Angelo Pagan (pagan@astrpd.pd.astro.it) suggests putting

keycode 22 = Delete
keycode 77 = KP_F1
keycode 112 = KP_F2
keycode 63 = KP_F3
keycode 82 = KP_F4
keycode 86 = KP_Separator

in the.Xmodmap file to enable EDT keypad emulation.

Send comments and suggestions to davisg@smit.edu

18 Using a mouse with jed and xjed

jed provides native support for a mouse on the following systems:

¢ A Linux console running the GPM server. This server is aaepient for the ‘selection’ program. It is available from
sunsite.unc.edu:/pub/Linux/system/Daemons/gpm-0.97.tar.gz

¢ MSDOS
o Xjed
Later, OS/2 support will be added.

In addition to “native” mouse suppojéd is able to interact with a mouse using the ‘XTerm Event Protocol’. Support for this
protocol is available when runniggd in an XTerm as well as interacting wifed from an MSDOS terminal emulator, e.g.,
MS-Kermit, using the PCMOUSE TSR.

The JED Editor 20

This document is divided into two sections. The first section describes native mouse support (Linux, Mgiop&hd the
second section describes the support for the XTerm Event Protocol.

18.1 Native Mouse Support

The S-Lang filgjed/lib/mouse.sl provides a user interface to the mouse. It can only be loaded for systems which
provide native support for the mouse. Currently this includes MSDOS, Linux consolgjehdThis file is automatically

loaded from os.sl whejed is started up. (See o0s.sl for how this is accomplished). Once this file has been loaded, the mouse
buttons behave as described below.

This interface assumes the presence of a three button mouse. Unfortunately, in the MSDOS world, two button mice are
are quite common. Nevertheleged is able to emulate a three button mouse by using the ALT key. Any button pressed

in combination with the ALT key is considered to be tiéddle mouse button. For example, to get the effect of pressing
Ctrl-Middle, hold down on the ALT and Ctrl key while pressing any mouse button.

Clicking in a window

Left If a region is already marked, simply un-mark it. If one is not marked, move cursor to the mouse
point crossing windows if necessary. If the button is held down and the mouse is dragged, a region
will be highlighted and then copied to the cutbuffer when the button is released.

Middle If a region is already marked, copy it to the mouse paste-buffer. Otherwise, paste text from the
system cut buffer to current editing point. Tigy not bethe position of the mouse.

Right If a region is already marked, delete it and place a copy into the mouse paste-buffer. Otherwise,
simply position the editing point at the position of the mouse. If the button is held down and the
mouse is dragged, a new region will be marked.

Shift Middle Insert contents of the lagtd mouse copy or kill. This function may be identical to simply clicking
on the middle button without using the shift key on non-X systems. Simply clicking the middle
mouse button will insert the contents of the current selection which may not be ownjedl by

Other buttons combinations are undefined. Some modes may utilize the mouse in a slightly different manner.

Clicking on a window status line

Left Switch to next buffer

Ctrl-Left Kill buffer described by status line
Shift-Left Scroll window back one page
Shift-Right Scroll window forward one page
Middle Split the window

Right Delete the window

For example, one can quickly move from one buffer to the next by simply clicking on the status line with the left mouse
button.

Tips for using the mouse

¢ To quicky move the cursor to another location, simply point the mouse at that spot and click the LEFT mouse button.

¢ To copy a region for subsequent pasting, move the mouse to the beginning of the region and press the LEFT mouse
button. While holding it down, “drag” the mouse to the end of the region and release it.

o To cut a region and put it in the paste buffer, define a region by dragging with the RIGHT mouse button. Now release
the RIGHT button and then press and immediately release it.

The JED Editor 21

18.2 XTerm Event Support

Xterm event support is provided by not only Xterm but also the Linux console running the ‘selection’ program. Only versions

1.6 and greater of selection provide this support. In addition, one must be usiogra Linux kernel (1.1.35 or newer.) Please
note that the selection program is considered obsolete and should desc:ply the GPM mouse server.

Mouse Usage

Left Button If the left button is clicked on the status line of a window, the window will switch to a different
buffer.
If the button is pressed anywhere else in the window, the cursor will be positioned at the location of
the click.

Middle Button On status line: split the window
Anywhere else: If the region is highlighted, the region will be copied to the pastebuffer. This does
not delete the region. Otherwise, the contents in the pastebuffer will be pasted to the current editing
point.

Right Button On status line: delete the window.
Anywhere else: If a region is highlighted, the region will be extended to the position of the mouse.
Otherwise, the mark is set and a region will be defined.

Cut/Paste Tips

To mark and manipulate a region do:
1. Click the LEFT mouse button at the beginning of the region.
2. Move the mouse to the end of the region and click the RIGHT mouse button. The region should now be marked.
3. Click the MIDDLE button to copy the region to the pastebuffer.

4. To paste from the pastebuffer, move the cursor to where you want to paste and press the MIDDLE button.

19 Frequently Asked Questions

How do | obtain jed?

jed is available via anonymous ftp from space.mit.edu inghk/davis/jed directory.jed comes in three forms:
jedxxx.tar.Z unix distribution for version xxx

jedxxx.*_of_n n part VMS share distribution for xxx

jedxxx.zip PC distribution with precompiled jed.exe

All distributions are identical except that the zip file also contains a precompiled executable for PC systems.

jed may also be obtained by email for those without &ifress. To learnbaut how to ftp using email, send email to
ftpmail@pa.dec.com with the single lilhelp . A message will be returned with instructions.

For those with VMS systems, Hunter Goatley has njadavailable via anonymous ftp from ftp.spc.edi.MACRO32.SAVESETS]JE

This distributionincludes VMSOBJ s and aEXE file that was linked under VMS V5.1. [Note that although this distribution

is intended for VMS systems, it includes makefiles and sources for unix as well. However, you will need to get unzip for your

unix system. —John]

The JED Editor 22

How do | disable jed’'s C mode?

The startup file ‘site.sl’ contains the functiomode_hook which is called whenever a file is loaded. This function is passed

the filename extension. If a file with or h extension is read, this function will turn on C-mode for that buffer. You could
modify this function to not select C-mode. However, this is not recommended. Rather, it is recommended that you simply
rebind the offending keybinding. These include} , theTABkey, and th(RETURNey.

Simply put any or all of:

"self_insert_cmd" "{" setkey
"self_insert_cmd" "}" setkey
"self_insert_cmd" "M" setkey
"newline" "M setkey

in your personal startup filggd.rc or.jedrc).

Before you do this, are you sure that you really understand what C mode does? If not, please read on.

What is C mode?

In C mode, theTABkey does not insert tabs. Instead, it runs a command cailtksht_line . Itis really the quickest way
to edit C code. In this mode, tHAB, RETURIN{ , and} keys are special.

If you edit a file calledx.c , jed will invoke its C mode. Entering the 28 characters (no newlirf, etc...)

main (fif (x == 2){x = 4}}

should result in:

main () {
if (x == 2) {
X = 4
}
}

which would take alot more time using tiHeAB and NEWLINEkeys. If you do not like the indentation style, you can
customize it by setting the appropriate variableghrc

To see the use of the tab key, delete the whitespace in front of all the lines, move to any of the lines (anywhere on the line)
and hit theTABKkey. This should correctly indent the linedocording toyour preferences (i.e., the variableged.rc).

Finally, move to one of the lines and enfe8C ;. This should produce a C comment.

Using the C mode and thBAB key asindent_line also helps you avoid syntax errors. Basically, a line simply will
not indent properly. This indicats that you left off a brace, mismatched parenthesis, etc... If yoUuABralvay from
indent_line , you lose some of this.

Note that these same comments apply to Fortran mode. Get a file xdtled . Enter the characters:

TABprogram mainRETinteger*4 iRETdo 10 i=1,3RETcall f(i)RET10continueRETend

HereTAB means hifTABandRETmeans hit return. This will result in:

program main
integer*4 i
do 10 i=1,3
call (i)
10 continue
end

The JED Editor 23

Again, the editor has done all the work. Once you get used to this style of editing, you will not want to go back.

Also note that this will not work if EDT is loaded. To get this functionality back, you will need to do:

setkey(“indent_line_cmd", "\t");
setkey("newline_and_indent_cmd", "*M");

AFTER edt.sl is loaded.

How do I turn on wrap mode or turn it off?

Normally, this is done automatically whéad loads a file with extensionsxt ,.doc , etc... See question 2 for a discussion
of how this is done. To turn on wrap mode for the current buffer, simply [iesape-X and enter:

text_mode

at the prompt. To turn it off, you must change the mode to something else. A fairly generic choiceas thede mode. To
do this, pres&scape-X and enter:

no_mode

atthe prompt. Itis easy to write a function to toggle the mode for you that can be bound to a key. Thigglee (vrapmode)
will work:

define toggle_wrapmode ()

{
variable mode, modestr;
(modestr, mode) = whatmode ();
if (mode & 1) % test wrap bit
mode = mode & ~(1); % wrap bit on so mask it off
else mode = mode | 1; % wrap bit off so set it.
setmode (modestr, mode);
}

What is the difference between internal and intrinsic functions?

An intrinsic function is a function that is directly callable from S-Lang while an internal function cannot. However, internal
functions can be called indirectly through the use of the intrinsic funac#dn . For example, consider the internal function
self_insert_cmd . Most typing keys are bound to this function and cause the key to be directly inserted into the buffer.
Consider the effect of this. After a character to be inserted is receivgedbyhe buffer is updated to reflect its insertion.

Then the screen is updated. Here lies the essential difference between the two types of functions. If the screen was in sync
before the insertiorjed can simply put the terminal in insert mode, send out the character and take the terminal back out of
insert mode. However, this requires knowing the state of the screen. If called from a S-Lang routine, all bets are off. Since
the screen update is not performed until after any S-Lang function has returjeekl tioe buffer and the screen will almost
always be out of sync with respect to one another and a full screen update will have to be performed. But this is very costly
to have to do for every insertion. Henged makes a distinction between the two types of functions by making the most
common ones internal. The upshot is this: intrinsic functions will cause a full screen update while internal ones may not.

Sometimes during screen updates, jed pauses. Why is this?

Since version 0.9jed checks the baud rate and tries to output characters based on reportgedatell literally sleep

when outputting many characters if the reported baud rate is small. One should first check to see that terminal driver has the
baud rate set appropriately. On Unix, this is done by tymittg -a at the shell prompt. If setting the baud rate to the
correct value does not help, set the internal global vari@dPUT_RATHEo zero. This is achived by uncommenting the

line referring toOUTPUT_RATI thejed.rc initialization file. If there is still a problem, contact me.

The JED Editor 24

How do | get jed to recognize Control-S and Control-Q?

Many systems uséS/~Q for flow control— the so-called XON/XOFF protocol which is probably the regedrdoes not
see either of these two characters. Perhaps the most portable solution to this problem is to simply avéis asitQ
altogether. This may require the user to rebind those those functions that have key bindings composed of these characters.

jed is able to enable or disable flow control on the system that it is running. This may be done by putting the line:

enable_flow_control (0); % turn flow control off

inyour .jedrc file. Using a value of 1 turns flow control on.

Another solution is to use thmap_input function to map a different key S (and~Q). For example, one might simply
choose to map\ to”~S and™ (Control-*) to”Q. To do this, simply put:

map_input (28, 19); % N --> NS
map_input (30, 17); % M > "AQ

inyour.jedrc (jed.rc) file.

Can | bind the Alt keys on the PC?
Yes. TheALT keys return a two character key sequence. The key sequence for a pa&iclilaey as well as other function
keys are listed in the filpc-keys.txt
Many users simply want to use th&. T key as a Meta Character. To hgee interpretALT-X asESC-X, put
ALT_CHAR = 27,

intyourjed.rc file. Here ‘X’ is any key. (Actually, this should not becessary— the default value &t T_CHARSs 27).

How do | find out what characters a particular key generates?

The simpliest way is to stajed via the command:

jed -l keycode -f keycode

jed will then prompt for a key to be pressed and return the escape sequence that the key sgadss lised, it will also
return the keysym (See online help on theset_keysym function for more information).

An alternative approach is to use the quoted insert function. By default, this is bound to the batkkeytSimply switch

to the*scratch* buffer, press the backquote key followed by the key in question. The key sequence will be inserted into
the buffer. This exploits the fact that most multi-character key sequences begin wiB@eharacter followed one or more
printable characters.

If this fails, the following function will suffice:

define insert_this_key ()

{
variable c;
pop2buf ("*scratch*");
eob ();
message ("Press key:"); update (1);
forever
{
c = getkey ();

if (c == 0) insert(""@"); else insert (char (c));
lif (input_pending (3)) break;

}

The JED Editor 25

Simply type it into the scratch buffer, preBSC-X and typeevalbuffer . Then, to use the function, preBSC-X again
and enteinsert_this_key

jed scrolls slow on my WizBang-X-Super-Terminal. What can | do about it?

On Unix, jed uses termcap (terminfo) and the value of TfeRMenvironment variable. Chance are, even though you are
using an expansive state of the art terminal, you have told unix it is a vt100. Even if you have EERNkariable to the
appropriate value for you terminal, the termcap file may be missing entries for your “WizBang” features. This is particularly
the case for Ultrix systems— the vt102, vt200, and vt300 termcap entries are missilg dnelDL termcap flags. In fact,

the Ultrix man page for termcap does not even mention these capabilities!

jed is able to compensate for missing termcap entries only for vtxxx terminals. If your terminal is a fancy vtxxx terminal, put
the line:

set_term_vitxxx (0);
inyour .jedrc file.

How do | get a list of functions?

Help on any documented function is available by pressing ‘Ctrl-H f’ and entering the function name at the prompt. If you
simply hit return, you will get the documentation for all functions.

How can | useedt.sl with jed386.exe ?

The basic problem is the current generation of the 32 bit compiler (DJGPP) used to gprud86eexe cannot handle the
hardware keyboard interrupt used to remap the numeric keypad. Nevertheless, it is possibkedtoslise with jed386 .
However, the function key$;1 to F10 must be used for the EDT keypad.

The remapping is as follows:

VT100 Keys
IBM Function On the Numeric Keypad

| F1]| F2 | F3 | F4 |

| ----- B . Fomem A | | ----- B — L ----- B |

| F5 | F6 | F7 | F8 | | 7 1 8 | 9 | - |
| ----- B . Fomem A | | ----- B — B B |

| F9 | F10 | F11 | F12 | | 4 | 5 | 6 | , |
| ----- B . Fomem A | | ----- B — B B |

| SF1 | SF2 | SF3 | SF4 | | 21 2 | 3 | |
e S R |-emmemnees +-----|[ENTER]

| SF5 | SF6 | SF7 | SF8 | | 0 | |

Here,SF1 meansSHIFT-F1 , etc...

How do | set custom tab stops in jed?

Put something like:

variable Tab_Stops;
Tab_Stops = create_array('i’, 20, 1);
%% The following defines the tab stops to be 8 column:
_for (0, 19, 1)
{ =81,
Tab_Stops[$1] = $1 * 8 + 1;
}

The JED Editor

26

in yourjed.rc

Tab_Sto
Tab_Sto

etc...

. To individually set them, do:

4,
18:;

ps[0]
ps[1]

