
S-Lang Library C Programmer's Guide (v2.3.0)

John E. Davis <www.jedsoft.org> Sep 14, 2014

ii

Preface

S-Lang is an interpreted language that was designed from the start to be easily embedded into a

program to provide it with a powerful extension language. Examples of programs that use S-Lang

as an extension language include the jed text editor and the slrn newsreader. Although S-Lang

does not exist as a separate application, it is distributed with a quite capable program called slsh

(�slang-shell�) that embeds the interpreter and allows one to execute S-Lang scripts, or simply

experiment with S-Lang at an interactive prompt. Many of the the examples in this document are

presented in the context of one of the above applications.

S-Lang is also a programmer's library that permits a programmer to develop sophisticated platform-

independent software. In addition to providing the S-Lang interpreter, the library provides facilities

for screen management, keymaps, low-level terminal I/O, etc.

A Brief History of S-Lang

I �rst began working on S-Lang sometime during the fall of 1992. At that time I was writing

a text editor (jed), which I wanted to endow with a macro language. It occurred to me that an

application-independent language that could be embedded into the editor would prove more useful

because I could envision embedding it into other programs. As a result, S-Lang was born.

S-Lang was originally a stack language that supported a postscript-like syntax. For that reason,

I named it S-Lang, where the S was supposed to emphasize its stack-based nature. About a year

later, I began to work on a preparser that would allow one unfamiliar with stack based languages

to make use of a more traditional in�x syntax. Currently, the syntax of the language resembles

C, nevertheless some postscript-like features still remain, e.g., the `%' character is still used as a

comment delimiter.

Acknowledgements

Since I �rst released S-Lang, I have received a lot feedback about the library and the language from

many people. This has given me the opportunity and pleasure to interact with a number of people

to make the library portable and easy to use. In particular, I would like to thank the following

individuals:

Luchesar Ionkov for his comments and criticisms of the syntax of the language. He was the person

who made me realize that the low-level byte-code engine should be totally type-independent. He also

improved the tokenizer and preparser and impressed upon me that the language needed a grammar.

iii

iv

Mark Olesen for his many patches to various aspects of the library and his support on AIX. He also

contributed a lot to the pre-processing (SLprep) routines.

John Burnell for the OS/2 port of the video and keyboard routines. He also made value suggestions

regarding the interpreter interface.

Darrel Hankerson for cleaning up and unifying some of the code and the make�les.

Dominik Wujastyk who was always willing to test new releases of the library.

Michael Elkins for his work on the curses emulation.

Hunter Goatley, Andy Harper, Martin P.J. Zinser, and Jouk Jansen for their VMS support.

Dave Sims and Chin Huang for Windows 95 and Windows NT support, and Dino Sangoi for the

Windows DLL support.

I am also grateful to many other people who send in bug-reports, bug-�xes, little enhancements, and

suggestions, and so on. Without such community involvement, S-Lang would not be as well-tested

and stable as it is. Finally, I would like to thank my wife for her support and understanding while

I spent long weekend hours developing the library.

Contents

1 Introduction 1

2 Error Handling 3

3 Unicode Support 5

4 Interpreter Interface 7

4.1 Embedding the Interpreter . 7

4.2 Calling the Interpreter . 8

4.2.1 Loading Files . 8

4.2.2 Loading Strings . 9

4.3 Intrinsic Functions . 9

4.3.1 Restrictions on Intrinsic Functions . 10

4.3.2 Adding a New Intrinsic . 10

4.3.3 More Complicated Intrinsics . 12

4.4 Intrinsic Variables . 14

4.5 Aggregate Data Objects . 16

4.5.1 Arrays . 16

4.5.2 Structures . 19

4.6 Signals . 23

4.7 Exceptions . 23

5 Keyboard Interface 25

5.1 Initializing the Keyboard Interface . 25

5.2 Resetting the Keyboard Interface . 26

5.3 Initializing the SLkp Routines . 26

5.4 Setting the Interrupt Handler . 27

5.5 Reading Keyboard Input with SLang_getkey . 28

v

vi CONTENTS

5.6 Reading Keyboard Input with SLkp_getkey . 29

5.7 Bu�ering Input . 30

5.8 Global Variables . 31

6 Readline Interface 33

6.1 Introduction . 33

6.2 Interpreter Interface . 34

7 Screen Management 35

7.1 Initialization . 35

7.2 Resetting SLsmg . 36

7.3 Handling Screen Resize Events . 36

7.4 SLsmg Functions . 37

7.4.1 Positioning the cursor . 37

7.4.2 Writing to the Display . 38

7.4.3 Erasing the Display . 39

7.4.4 Setting Character Attributes . 40

7.4.5 Lines and Alternate Character Sets . 41

7.4.6 Miscellaneous Functions . 42

7.5 Variables . 43

7.6 Hints for using SLsmg . 43

8 Signal Functions 45

9 Searching Functions 47

9.1 Simple Searches . 47

9.2 Regular Expressions . 47

A S-Lang 2 API NEWS and UPGRADE information 49

A.1 SLang_Error . 49

A.2 SLsmg/SLtt Functions . 50

A.3 SLsearch Functions . 50

A.4 Regular Expression Functions . 51

A.5 Readline Functions . 51

A.6 Preprocessor Interface . 51

A.7 Functions dealing with the interpreter C API . 52

CONTENTS vii

A.8 Modules . 52

B Copyright 53

B.1 The GNU Public License . 53

B.2 The Unicode Inc. Copyright . 59

viii CONTENTS

Chapter 1

Introduction

S-Lang is a C programmer's library that includes routines for the rapid development of sophisti-

cated, user friendly, multi-platform applications. The S-Lang library includes the following:

• Low level tty input routines for reading single characters at a time.

• Keymap routines for de�ning keys and manipulating multiple keymaps.

• A high-level keyprocessing interface (SLkp) for handling function and arrow keys.

• High level screen management routines for manipulating both monochrome and color terminals.

These routines are very e�cient. (SLsmg)

• Low level terminal-independent routines for manipulating the display of a terminal. (SLtt)

• Routines for reading single line input with line editing and recall capabilities. (SLrline)

• Searching functions: both ordinary searches and regular expression searches. (SLsearch)

• An embedded stack-based language interpreter with a C-like syntax.

The library is currently available for OS/2, MSDOS, Unix, and VMS systems. For the most part,

the interface to library routines has been implemented in such a way that it appears to be platform

independent from the point of view of the application. In addition, care has been taken to ensure

that the routines are �independent� of one another as much as possible. For example, although the

keymap routines require keyboard input, they are not tied to S-Lang's keyboard input routines�

one can use a di�erent keyboard getkey routine if one desires. This also means that linking to

only part of the S-Lang library does not pull the whole library into the application. Thus, S-Lang

applications tend to be relatively small in comparison to programs that use libraries with similar

capabilities.

1

2 Chapter 1. Introduction

Chapter 2

Error Handling

Many of the S-Lang functions return 0 upon success or -1 to signify failure. Other functions may

return NULL to indicate failure. In addition, upon failure, many will set the error state of the library

to a value that indicates the nature of the error. The value of this state may be queried via the

SLang_get_error function. This function will return 0 to indicate that there is no error, or a

non-zero value such as one of the following constants:

SL_Any_Error SL_Index_Error

SL_OS_Error SL_Parse_Error

SL_Malloc_Error SL_Syntax_Error

SL_IO_Error SL_DuplicateDefinition_Error

SL_Write_Error SL_UndefinedName_Error

SL_Read_Error SL_Usage_Error

SL_Open_Error SL_Application_Error

SL_RunTime_Error SL_Internal_Error

SL_InvalidParm_Error SL_NotImplemented_Error

SL_TypeMismatch_Error SL_LimitExceeded_Error

SL_UserBreak_Error SL_Forbidden_Error

SL_Stack_Error SL_Math_Error

SL_StackOverflow_Error SL_DivideByZero_Error

SL_StackUnderflow_Error SL_ArithOverflow_Error

SL_ReadOnly_Error SL_ArithUnderflow_Error

SL_VariableUninitialized_Error SL_Domain_Error

SL_NumArgs_Error SL_Data_Error

SL_Unknown_Error SL_Unicode_Error

SL_Import_Error SL_InvalidUTF8_Error

For example, if a function tries to allocate memory but fails, then SLang_get_error will return

SL_Malloc_Error.

If the application makes use of the interpreter, then it is important that application-speci�c functions

called from the interpreter set the error state of the library in order for exception handling to work.

This may be accomplished using the SLang_set_error function, e.g.,

if (NULL == (fp = fopen (file, "r")))

SLang_set_error (SL_Open_Error);

3

4 Chapter 2. Error Handling

Often it is desirable to give error message that contains more information about the error. The

SLang_verror function may be used for this purpose:

if (NULL == (fp = fopen (file, "r")))

SLang_verror (SL_Open_Error, "Failed to open %s: errno=%d",

file, errno);

By default, SLang_verror will write the error message to stderr. For applications that make use of

the SLsmg routines it is probably better for the error message to be printed to a speci�c area of the

display. The SLang_Error_Hook variable may be used to redirect error messages to an application

de�ned function, e.g.,

static void write_error (char *err)

{

SLsmg_gotorc (0, 0);

SLsmg_set_color (ERROR_COLOR);

SLsmg_write_string (err);

}

int main (int argc, char **argv)

{

/* Redirect error messages to write_error */

SLang_Error_Hook = write_error;

.

.

}

Under extremely rare circumstances the library will call the C exit function causing the application

to exit. This will happen if the SLtt_get_terminfo is called but the terminal is not su�ciently

powerful. If this behavior is undesirable, then another function exists (SLtt_initialize) that

returns an error code. The other times the library will exit are when the interpreter is called upon

to do something but has not been properly initialized by the application. Such a condition is regarded

as misuse of the libary and should be caught by routine testing of the application during development.

In any case, when the library does call the exit function, it will call an application-de�ned exit hook

speci�ed by the SLang_Exit_Error_Hook variable:

static int exit_error_hook (char *fmt, va_list ap)

{

fprintf (stderr, "Fatal Error. Reason:");

vfprintf (stderr, fmt, va_list);

}

int main (int argc, char **argv)

{

SLang_Exit_Error_Hook = exit_error_hook;

.

.

}

The idea is that the hook can be used to perform some cleanup, free resources, and other tasks that

the application needs to do for a clean exit.

Chapter 3

Unicode Support

S-Lang has native support for the UTF-8 encoding of unicode in a number of its interfaces including

the the SLsmg screen mangement interface as well as the interpreter. UTF-8 is a variable length

multibyte encoding where unicode characters are represented by one to six bytes. A technical

description of the UTF-encoding is beyond the scope of this document, and as such the reader is

advised to look elsewhere for a more detailed speci�cation of the encoding.

By default, the library's handling of UTF-8 is turned o�. It may be enabled by a call to the

SLutf8_enable function:

int SLutf8_enable (int mode)

If the value of mode is 1, then the library will be put in UTF-8 mode. If the value of mode is 0, then

the library will be initialized with UTF-8 support disabled. If the value is -1, then the mode will

determined through an OS-dependent manner, e.g., for Unix, the standard locale mechanism will be

used. The return value of this function will be 1 if UTF-8 support was activated, or 0 if not.

The above function determines the UTF-8 state of the library as a whole. For some purposes it may

be desirable to have more �ne-grained control of the UTF-8 support. For example, one might be

using the jed editor to view a UTF-8 encoded �le but the terminal associated with the editor may

not support UTF-8. In such a case, one would want the SLsmg interface to be in UTF-8 mode but

lower-level SLtt interface to not be in UTF-8 mode. Hence, the following activation functions are

also provided:

int SLsmg_utf8_enable (int mode);

int SLtt_utf8_enable (int mode);

int SLinterp_utf8_enable (int mode);

Note that once one of these interface speci�c functions has been called, any further calls to the

umbrella function SLutf8_enable will have no e�ect on that interface. For this reason, it is best to

call SLutf8_enable �rst before the calling one of the interface-speci�c functions.

Until support for Unicode is more widespread among users, it is expected that most users will still

be using a national character set such as ASCII or iso-8869-1. For example, iso-8869-1 is a very

widespread character set used on Usenet. As a result, applications will still have to provide support

for such character sets. Unfortunately there appears to be no best way to do this.

5

6 Chapter 3. Unicode Support

For the most part, the UTF-8 support should be largely transparent to the user. For example, the

interpreter treats all multibyte characters as a single character which means that the user does not

have to be concerned about the internal representation of a character. Rather one must keep in

mind the distinction between a character and a byte.

Chapter 4

Interpreter Interface

The S-Lang library provides an interpreter that when embedded into an application, makes the

application extensible. Examples of programs that embed the interpreter include the jed editor and

the slrn newsreader.

Embedding the interpreter is easy. The hard part is to decide what application speci�c built-in or

intrinsic functions should be provided by the application. The S-Lang library provides some pre-

de�ned intrinsic functions, such as string processing functions, and simple �le input-output routines.

However, the basic philosophy behind the interpreter is that it is not a standalone program and it

derives much of its power from the application that embeds it.

4.1 Embedding the Interpreter

Only one function needs to be called to embed the S-Lang interpreter into an application:

SLang_init_slang. This function initializes the interpreter's data structures and adds some in-

trinsic functions:

if (-1 == SLang_init_slang ())

exit (EXIT_FAILURE);

This function does not provide �le input output intrinsic nor does it provide mathematical functions.

To make these as well as some posix system calls available use

if ((-1 == SLang_init_slang ()) /* basic interpreter functions */

|| (-1 == SLang_init_slmath ()) /* sin, cos, etc... */

|| (-1 == SLang_init_array ()) /* sum, min, max, transpose... */

|| (-1 == SLang_init_stdio ()) /* stdio file I/O */

|| (-1 == SLang_init_ospath ()) /* path_concat, etc... */

|| (-1 == SLang_init_posix_dir ()) /* mkdir, stat, etc. */

|| (-1 == SLang_init_posix_process ()) /* getpid, umask, etc. */

|| (-1 == SLang_init_posix_io ()) /* open, close, read, ... */

|| (-1 == SLang_init_signal ()) /* signal, alarm, ... */

)

exit (EXIT_FAILURE);

7

8 Chapter 4. Interpreter Interface

If you intend to enable all intrinsic functions, then it is simpler to initialize the interpreter via

if (-1 == SLang_init_all ())

exit (EXIT_FAILURE);

See the S-Lang Library Intrinsic Function Reference for more information about the intrinsic

functions.

4.2 Calling the Interpreter

There are several ways of calling the interpreter. The two most common method is to load a �le

containing S-Lang code, or to load a string.

4.2.1 Loading Files

The SLang_load_file and SLns_load_file functions may be used to interpret a �le. Both these

functions return zero if successful, or -1 upon failure. If either of these functions fail, the interpreter

will accept no more code unless the error state is cleared. This is done by calling SLang_restart

function to set the interpreter to its default state:

if (-1 == SLang_load_file ("site.sl"))

{

/* Clear the error and reset the interpreter */

SLang_restart (1);

}

When a �le is loaded via SLang_load_file, any non-public variables and functions de�ned in the

�le will be placed into a namespace that is local to the �le itself. The SLns_load_file function

may be used to load a �le using a speci�ed namespace, e.g.,

if (-1 == SLns_load_file ("site.sl", "NS"))

{

SLang_restart (1);

SLang_set_error (0);

}

will load site.sl into a namespace called NS. If such a namespace does not exist, then it will be

created.

Both the SLang_load_file and SLns_load_file functions search for �les along an application-

speci�ed search path. This path may be set using the SLpath_set_load_path function, as well as

from interpeted code via the set_slang_load_path function. By default, no search path is de�ned.

NOTE: It is highly recommended that an application embedding the interpreter include

the slsh lib directory in the search path. The .sl �les that are part of slsh are both

useful and and should work with any application embedding the interpreter. Moreover,

if the application permits dynamically loaded modules, then there are a growing number

of excellent quality modules for slsh that can be utilized by it. Applications that follow

this recommendation are said to be conforming.

4.3. Intrinsic Functions 9

Files are searched as follows: If the name begins with the equivalent of "./" or "../", then it is

searched for with respect to the current directory, and not along the load-path. If no such �le exists,

then an error will be generated. Otherwise, the �le is searched for in each of the directories of the

load-path by concatenating the path element with the speci�ed �le name. The �rst such �le found

to exist by this process will be loaded. If a matching �le still has not been found, and the �le name

lacks an extension, then the path is searched with ".sl" and ".slc" appended to the �lename. If

two such �les are found (one ending with ".sl" and the other with ".slc"), then the more recent

of the two will be used. If no matching �le has been found by this process, then the search will cease

and an error generated.

The search path is a delimiter separated list of directories that specify where the interpreter looks

for �les. By default, the value of the delimiter is OS-dependent following the convention of the

underlying OS. For example, on Unix the delimiter is represented by a colon, on DOS/Windows it is

a semi-colon, and on VMS it is a space. The SLpath_set_delimiter and SLpath_get_delimiter

may be used to set and query the delimiter's value, respectively.

4.2.2 Loading Strings

There are several other mechanisms for interacting with the interpreter. For example, the

SLang_load_string function loads a string into the interpreter and interprets it:

if (-1 == SLang_load_string ("message (\"hello\");"))

return;

Similarly, the SLns_load_string function may be used to load a string into a speci�ed namespace.

Typically, an interactive application will load a �le via SLang_load_file and then go into a loop

that consists of reading lines of input and sending them to the interpreter, e.g.,

while (EOF != fgets (buf, sizeof (buf), stdin))

{

if (-1 == SLang_load_string (buf))

{

SLang_restart (1);

}

}

Finally, some applications such as jed and slrn use another method of interacting with the inter-

preter. They read key sequences from the keyboard and map those key sequences to interpreter

functions via the S-Lang keymap interface.

4.3 Intrinsic Functions

An intrinsic function is simply a function that is written in C and is made available to the inter-

preter as a built-in function. For this reason, the words `intrinsic' and `built-in' are often used

interchangeably.

10 Chapter 4. Interpreter Interface

Applications are expected to add application speci�c functions to the interpreter. For example, jed

adds nearly 300 editor-speci�c intrinsic functions. The application designer should think carefully

about what intrinsic functions to add to the interpreter.

4.3.1 Restrictions on Intrinsic Functions

When implementing intrinsic functions, it is necessary to follow a few rules to cooperate with the

interpreter.

The C version of an intrinsic function takes only pointer arguments. This is because when the

interpreter calls an intrinsic function, it passes values to the function by reference and not by value.

For example, intrinsic with the declarations:

int intrinsic_0 (void);

int intrinsic_1 (char *s);

void intrinsic_2 (char *s, int *i);

void intrinsic_3 (int *i, double *d, double *e);

are all valid. However,

int invalid_1 (char *s, int len);

is not valid since the len parameter is not a pointer.

The return value of an intrinsic function must be one of the following types: void, char, short,

int, long, double, char *, as well as unsigned versions of the integer types. A function such as

int *invalid (void);

is not permitted since int* is not a valid return-type for an intrinsic function. Any other type of

value can be passed back to the interpreter by explicitly pushing the object onto the interpreter's

stack via the appropriate "push" function.

The current implementation limits the number of arguments of an intrinsic function to 7. The "pop"

functions can be used to allow the function to take an arbitrary number as seen from an interpreter

script.

Another restriction is that the intrinsic function should regard all its parameters as pointers to

constant objects and make no attempt to modify the value to which they point. For example,

void truncate (char *s)

{

s[0] = 0;

}

is illegal since the function modi�es the string s.

4.3.2 Adding a New Intrinsic

There are two basic mechanisms for adding an intrinsic function to the interpreter:

SLadd_intrinsic_function and SLadd_intrin_fun_table. Functions may be added to a spec-

i�ed namespace via SLns_add_intrinsic_function and SLns_add_intrin_fun_table functions.

4.3. Intrinsic Functions 11

As an speci�c example, consider a function that will cause the program to exit via the exit C

library function. It is not possible to make this function an intrinsic because it does not meet the

speci�cations for an intrinsic function that were described earlier. However, one can call exit from

a function that is suitable, e.g.,

void intrin_exit (int *code)

{

exit (*code);

}

This function may be made available to the interpreter as an intrinsic via the

SLadd_intrinsic_function routine:

if (-1 == SLadd_intrinsic_function ("exit", (FVOID_STAR) intrin_exit,

SLANG_VOID_TYPE, 1,

SLANG_INT_TYPE))

exit (EXIT_FAILURE);

This statement basically tells the interpreter that intrin_exit is a function that returns nothing

and takes a single argument: a pointer to an integer (SLANG_INT_TYPE). A user can call this function

from within the interpreter via

message ("Calling the exit function");

exit (0);

After printing a message, this will cause the intrin_exit function to execute, which in turn calls

exit.

The most convenient mechanism for adding new intrinsic functions is to create a table of

SLang_Intrin_Fun_Type objects and add the table via the SLadd_intrin_fun_table function.

The table will look like:

SLang_Intrin_Fun_Type My_Intrinsics [] =

{

/* table entries */

MAKE_INTRINSIC_N(...),

MAKE_INTRINSIC_N(...),

.

.

MAKE_INTRINSIC_N(...),

SLANG_END_INTRIN_FUN_TABLE

};

Construction of the table entries may be facilitated using a set of MAKE_INTRINSIC macros de�ned

in slang.h. The main macro is called MAKE_INTRINSIC_N and takes 11 arguments:

MAKE_INTRINSIC_N(name, funct-ptr, return-type, num-args,

arg-1-type, arg-2-type, ... arg-7-type)

Here name is the name of the intrinsic function that the interpreter is to give to the function.

func-ptr is a pointer to the intrinsic function taking num-args and returning ret-type. The �nal

12 Chapter 4. Interpreter Interface

7 arguments specify the argument types. For example, the intrin_exit intrinsic described above

may be added to the table using

MAKE_INTRINSIC_N("exit", intrin_exit, SLANG_VOID_TYPE, 1,

SLANG_INT_TYPE, 0,0,0,0,0,0)

While MAKE_INTRINSIC_N is the main macro for constructing table entries, slang.h de�nes other

macros that may prove useful. In particular, an entry for the intrin_exit function may also be

created using any of the following forms:

MAKE_INTRINSIC_1("exit", intrin_exit, SLANG_VOID_TYPE, SLANG_INT_TYPE)

MAKE_INTRINSIC_I("exit", intrin_exit, SLANG_VOID_TYPE)

See slang.h for related macros. You are also encouraged to look at, e.g., slang/src/slstd.c for a

more extensive examples.

The table may be added via the SLadd_intrin_fun_table function, e.g.,

if (-1 == SLadd_intrin_fun_table (My_Intrinsics, NULL))

{

/* an error occurred */

}

Please note that there is no need to load a given table more than once, and it is considered to be an

error on the part of the application it adds the same table multiple times. For performance reasons,

no checking is performed by the library to see if a table has already been added.

Earlier it was mentioned that intrinsics may be added to a speci�ed namespace. To this end, one

must �rst get a pointer to the namespace via the SLns_create_namespace function. The following

example illustrates how this function is used to add the My_Intrinsics table to a namespace called

my:

SLang_NameSpace_Type *ns = SLns_create_namespace ("my");

if (ns == NULL)

return -1;

return SLns_add_intrin_fun_table (ns, My_Intrinsics, "__MY__"));

4.3.3 More Complicated Intrinsics

The intrinsic functions described in the previous example were functions that took a �xed number

of arguments. In this section we explore more complex intrinsics such as those that take a variable

number of arguments.

Consider a function that takes two double precision numbers and returns the lesser:

double intrin_min (double *a, double *b)

{

if (*a < *b) return *a;

return *b;

}

4.3. Intrinsic Functions 13

This function may be added to a table of intrinsics using

MAKE_INTRINSIC_2("vmin", intrin_min, SLANG_DOUBLE_TYPE,

SLANG_DOUBLE_TYPE, SLANG_DOUBLE_TYPE)

It is useful to extend this function to take an arbitray number of arguments and return the lesser.

Consider the following variant:

double intrin_min_n (int *num_ptr)

{

double min_value, x;

unsigned int num = (unsigned int) *num_ptr;

if (-1 == SLang_pop_double (&min_value))

return 0.0;

num--;

while (num > 0)

{

num--;

if (-1 == SLang_pop_double (&x))

return 0.0;

if (x < min_value) min_value = x;

}

return min_value;

}

Here the number to compare is passed to the function and the actual numbers are removed from

the stack via the SLang_pop_double function. A suitable table entry for it is

MAKE_INTRINSIC_I("vmin", intrin_min_n, SLANG_DOUBLE_TYPE)

This function would be used in an interpreter script via a statement such as

variable xmin = vmin (x0, x1, x2, x3, x4, 5);

which computes the smallest of 5 values.

The problem with this intrinsic function is that the user must explicitly specify how many numbers

to compare. It would be more convenient to simply use

variable xmin = vmin (x0, x1, x2, x3, x4);

An intrinsic function can query the value of the variable SLang_Num_Function_Args to obtain the

necessary information:

double intrin_min (void)

{

double min_value, x;

unsigned int num = SLang_Num_Function_Args;

14 Chapter 4. Interpreter Interface

if (-1 == SLang_pop_double (&min_value, NULL, NULL))

return 0.0;

num--;

while (num > 0)

{

num--;

if (-1 == SLang_pop_double (&x, NULL, NULL))

return 0.0;

if (x < min_value) min_value = x;

}

return min_value;

}

This may be declared as an intrinsic using:

MAKE_INTRINSIC_0("vmin", intrin_min, SLANG_DOUBLE_TYPE)

4.4 Intrinsic Variables

It is possible to access an application's global variables from within the interpreter. The current

implementation supports the access of variables of type int, char *, and double.

There are two basic methods of making an intrinsic variable available to the interpreter. The most

straight forward method is to use the function SLadd_intrinsic_variable:

int SLadd_intrinsic_variable (char *name, VOID_STAR addr,

SLtype data_type,

int read_only);

For example, suppose that I is an integer variable, e.g.,

int I;

One can make it known to the interpreter as I_Variable via a statement such as

if (-1 == SLadd_intrinsic_variable ("I_Variable", &I,

SLANG_INT_TYPE, 0))

exit (EXIT_FAILURE);

Similarly, if S is declared as

char *S;

then

if (-1 == SLadd_intrinsic_variable ("S_Variable", &S,

SLANG_STRING_TYPE, 1))

exit (EXIT_FAILURE);

4.4. Intrinsic Variables 15

makes S available as a read-only variable with the name S_Variable. Note that if a pointer variable

is made available to the interpreter, it should be declared as being read-only to prevent the interpreter

from changing the pointer's value.

It is important to note that if S were declared as an array of characters, e.g.,

char S[256];

then it would not be possible to make it directly available to the interpreter. However, one could

create a pointer to it, i.e.,

char *S_Ptr = S;

and make S_Ptr available as a read-only variable.

One should not make the mistake of trying to use the same address for di�erent variables as the

following example illustrates:

int do_not_try_this (void)

{

static char *names[3] = {"larry", "curly", "moe"};

unsigned int i;

for (i = 0; i < 3; i++)

{

int value;

if (-1 == SLadd_intrinsic_variable (names[i], (VOID_STAR) &value,

SLANG_INT_TYPE, 1))

return -1;

}

return 0;

}

Not only does this piece of code create intrinsic variables that use the same address, it also uses the

address of a local variable that will go out of scope.

The most convenient method for adding many intrinsic variables to the interpreter is to create an

array of SLang_Intrin_Var_Type objects and then add the array via SLadd_intrin_var_table.

For example, the array

static SLang_Intrin_Var_Type Intrin_Vars [] =

{

MAKE_VARIABLE("I_Variable", &I, SLANG_INT_TYPE, 0),

MAKE_VARIABLE("S_Variable", &S_Ptr, SLANG_STRING_TYPE, 1),

SLANG_END_TABLE

};

may be added via

if (-1 == SLadd_intrin_var_table (Intrin_Vars, NULL))

exit (EXIT_FAILURE);

16 Chapter 4. Interpreter Interface

It should be rather obvious that the arguments to the MAKE_VARIABLE macro correspond to the

parameters of the SLadd_intrinsic_variable function.

Finally, variables may be added to a speci�c namespace via the SLns_add_intrin_var_table and

SLns_add_intrinsic_variable functions.

4.5 Aggregate Data Objects

An aggregate data object is an object that can contain more than one data value. The S-Lang

interpreter supports several such objects: arrays, structure, and associative arrays. In the following

sections, information about interacting with these objects is given.

4.5.1 Arrays

An intrinsic function may interact with an array in several di�erent ways. For example, an intrinsic

may create an array and return it. The basic functions for manipulating arrays include:

SLang_create_array

SLang_pop_array_of_type

SLang_push_array

SLang_free_array

SLang_get_array_element

SLang_set_array_element

The use of these functions will be illustrated via a few simple examples.

The �rst example shows how to create an return an array of strings to the interpreter. In particular,

the names of the four seasons of the year will be returned:

void months_of_the_year (void)

{

static char *seasons[4] =

{

"Spring", "Summer", "Autumn", "Winter"

};

SLang_Array_Type *at;

SLindex_Type i, four;

four = 4;

at = SLang_create_array (SLANG_STRING_TYPE, 0, NULL, &four, 1);

if (at == NULL)

return;

/* Now set the elements of the array */

for (i = 0; i < 4; i++)

{

if (-1 == SLang_set_array_element (at, &i, &seasons[i]))

{

SLang_free_array (at);

4.5. Aggregate Data Objects 17

return;

}

}

(void) SLang_push_array (at, 0);

SLang_free_array (at);

}

This example illustrates several points:

First of all, the SLang_create_array function was used to create a 1 dimensional array of 4 strings.

Since this function could fail, its return value was checked. Also SLindex_Type was used for the

array size and index types. In S-Lang version 2, SLindex_Type is typedefed to be an int. However,

as this will change in a future version of the library, SLindex_Type should be used.

The SLang_set_array_element function was used to set the elements of the newly created array.

Note that the address containing the value of the array element was passed and not the value of the

array element itself. That is,

SLang_set_array_element (at, &i, seasons[i])

was not used. The return value from this function was also checked because it too could also fail.

Finally, the array was pushed onto the interpreter's stack and then it was freed. It is important

to understand why it was freed. This is because arrays are reference-counted. When the array

was created, it was returned with a reference count of 1. When it was pushed, the reference count

was bumped up to 2. Then since it was nolonger needed by the function, SLang_free_array

was called to decrement the reference count back to 1. For convenience, the second argument to

SLang_push_array determines whether or not it is to also free the array. So, instead of the two

function calls:

(void) SLang_push_array (at, 0);

SLang_free_array (at);

it is preferable to combine them as

(void) SLang_push_array (at, 1);

The second example returns a diagonal array of a speci�ed size to the stack. A diagonal array is a

2-d array with all elements zero except for those along the diagonal, which have a value of one:

void make_diagonal_array (SLindex_Type n)

{

SLang_Array_Type *at;

SLindex_Type dims[2];

SLindex_Type i, one;

dims[0] = dims[1] = n;

at = SLang_create_array (SLANG_INT_TYPE, 0, NULL, dims, 2);

if (at == NULL)

return;

18 Chapter 4. Interpreter Interface

one = 1;

for (i = 0; i < n; i++)

{

dims[0] = dims[1] = i;

if (-1 == SLang_set_array_element (at, dims, &one))

{

SLang_free_array (at);

return;

}

}

(void) SLang_push_array (at, 1);

}

In this example, only the diagonal elements of the array were set. This is bacause when the array

was created, all its elements were set to zero.

Now consider an example that acts upon an existing array. In particular, consider one that computes

the trace of a 2-d matrix, i.e., the sum of the diagonal elements:

double compute_trace (void)

{

SLang_Array_Type *at;

double trace;

SLindex_Type dims[2];

if (-1 == SLang_pop_array_of_type (&at, SLANG_DOUBLE_TYPE))

return 0.0;

/* We want a 2-d square matrix. If the matrix is 1-d and has only one

element, then return that element. */

trace = 0.0;

if (((at->num_dims == 1) && (at->dims[0] == 1))

|| ((at->num_dims == 2) && (at->dims[0] == at->dims[1])))

{

double dtrace;

SLindex_Type n = at->dims[0];

for (i = 0; i < n; i++)

{

dims[0] = dims[1] = i;

(void) SLang_get_array_element (at, &dims, &dtrace);

trace += dtrace;

}

}

else SLang_verror (SL_TYPE_MISMATCH, "Expecting a square matrix");

SLang_free_array (at);

return trace;

}

4.5. Aggregate Data Objects 19

In this example, SLang_pop_array_of_type was used to pop an array of doubles from the stack.

This function will make implicit typecasts in order to return an array of the requested type.

4.5.2 Structures

For the purposes of this section, we shall di�erentiate structures according to whether or not they

correspond to an application de�ned C structure. Those that do are called intrinsic structures, and

those do not are called S-Lang interpreter structures.

Interpreter Structures

The following simple example shows one method that may be used to create and return a structure

with a string and integer �eld to the interpreter's stack:

int push_struct_example (char *string_value, int int_value)

{

char *field_names[2];

SLtype field_types[2];

VOID_STAR field_values[2];

field_names[0] = "string_field";

field_types[0] = SLANG_STRING_TYPE;

field_values[0] = &string_value;

field_names[1] = "int_field";

field_types[1] = SLANG_INT_TYPE;

field_values[1] = &int_value;

if (-1 == SLstruct_create_struct (2, field_names,

field_types, field_values))

return -1;

return 0;

}

Here, SLstruct_create_struct is used to push a structure with the speci�ed �eld names and values

onto the interpreter's stack.

A simpler mechanism exists provided that one has already de�ned a C structure with a description

of how the structure is laid out. For example, consider a C structure de�ned by

typedef struct

{

char *s;

int i;

}

SI_Type;

Its layout may be speci�ed via a table of SLang_CStruct_Field_Type entries:

20 Chapter 4. Interpreter Interface

SLang_CStruct_Field_Type SI_Type_Layout [] =

{

MAKE_CSTRUCT_FIELD(SI_Type, s, "string_field", SLANG_STRING_TYPE, 0),

MAKE_CSTRUCT_FIELD(SI_Type, i, "int_field", SLANG_INT_TYPE, 0),

SLANG_END_CSTRUCT_TABLE

};

Here, MAKE_CSTRUCT_FIELD is a macro taking 5 arguments:

MAKE_CSTRUCT_FIELD(C-structure-type,

C-field-name,

slang-field-name,

slang-data-type,

is-read-only)

The �rst argument is the structure type, the second is the name of a �eld of the structure, the third

is a string that speci�es the name of the corresponding �eld of the S-Lang structure, the fourth

argument speci�es the �eld's type, and the last argument speci�es whether or not the �eld should

be regarded as read-only.

Once the layout of the structure has been speci�ed, pushing a S-Lang version of the structure is

trival:

int push_struct_example (char *string_value, int int_value)

{

SI_Type si;

si.s = string_value;

si.i = int_value;

return SLang_push_cstruct ((VOID_STAR)&si, SI_Type_Layout);

}

This mechanism of structure creation also permits a S-Lang structure to be passed to an intrinsic

function through the use of the SLang_pop_cstruct routine, e.g.,

void print_si_struct (void)

{

SI_Type si;

if (-1 == SLang_pop_cstruct ((VOID_STAR)&si, SI_Type_Layout))

return;

printf ("si.i=%d", si.i);

printf ("si.s=%s", si.s);

SLang_free_cstruct ((VOID_STAR)&si, SI_Type_Layout);

}

Assuming print_si_struct exists as an intrinsic function, the S-Lang code

variable s = struct {string_field, int_field};

s.string_field = "hello";

s.int_field = 20;

print_si_struct (s);

4.5. Aggregate Data Objects 21

would result in the display of

si.i=20;

si.s=hello

Note that the SLang_free_cstruct function was called after the contents of si were nolonger

needed. This was necessary because SLang_pop_cstruct allocated memory to set the char *s �eld

of si. Calling SLang_free_cstruct frees up such memory.

Now consider the following:

typedef struct

{

pid_t pid;

gid_t group;

}

X_t;

How should the layout of this structure be de�ned? One might be tempted to use:

SLang_CStruct_Field_Type X_t_Layout [] =

{

MAKE_CSTRUCT_FIELD(X_t, pid, "pid", SLANG_INT_TYPE, 0),

MAKE_CSTRUCT_FIELD(X_t, group, "group", SLANG_INT_TYPE, 0),

SLANG_END_CSTRUCT_TABLE

};

However, this assumes pid_t and gid_t have been typedefed as ints. But what if gid_t is a short?

In such a case, using

MAKE_CSTRUCT_FIELD(X_t, group, "group", SLANG_SHORT_TYPE, 0),

would be the appropriate entry for the group �eld. Of course, one has no way of knowing how gid_t

is declared on other systems. For this reason, it is preferable to use the MAKE_CSTRUCT_INT_FIELD

macro in cases involving integer valued �elds, e.g.,

SLang_CStruct_Field_Type X_t_Layout [] =

{

MAKE_CSTRUCT_INT_FIELD(X_t, pid, "pid", 0),

MAKE_CSTRUCT_INT_FIELD(X_t, group, "group", 0),

SLANG_END_CSTRUCT_TABLE

};

Before leaving this section, it is important to mention that access to character array �elds is not

permitted via this interface. That is, a structure such as

typedef struct

{

char name[32];

}

Name_Type;

22 Chapter 4. Interpreter Interface

is not supported since char name[32] is not a SLANG_STRING_TYPE object. Always keep in mind

that a SLANG_STRING_TYPE object is a char *.

Intrinsic Structures

Here we show how to make intrinsic structures available to the interpreter.

The simplest interface is to structure pointers and not to the actual structures themselves. The latter

would require the interpreter to be involved with the creation and destruction of the structures.

Dealing with the pointers themselves is far simpler.

As an example, consider an object such as

typedef struct _Window_Type

{

char *title;

int row;

int col;

int width;

int height;

} Window_Type;

which de�nes a window object with a title, size (width, height), and location (row, col).

We can make variables of type Window_Type available to the interpreter via a table as follows:

static SLang_IStruct_Field_Type Window_Type_Field_Table [] =

{

MAKE_ISTRUCT_FIELD(Window_Type, title, "title", SLANG_STRING_TYPE, 1),

MAKE_ISTRUCT_FIELD(Window_Type, row, "row", SLANG_INT_TYPE, 0),

MAKE_ISTRUCT_FIELD(Window_Type, col, "col", SLANG_INT_TYPE, 0),

MAKE_ISTRUCT_FIELD(Window_Type, width, "width", SLANG_INT_TYPE, 0),

MAKE_ISTRUCT_FIELD(Window_Type, height, "height", SLANG_INT_TYPE, 0),

SLANG_END_ISTRUCT_TABLE

};

More precisely, this de�nes the layout of the Window_Type structure. Here, the title has been

declared as a read-only �eld. Using

MAKE_ISTRUCT_FIELD(Window_Type, title, "title", SLANG_STRING_TYPE, 0),

would allow read-write access.

Now suppose that My_Window is a pointer to a Window_Type object, i.e.,

Window_Type *My_Window;

We can make this variable available to the interpreter via the SLadd_istruct_table function:

if (-1 == SLadd_istruct_table (Window_Type_Field_Table,

(VOID_STAR) &My_Window,

"My_Win"))

exit (1);

4.6. Signals 23

This creates a S-Lang interpreter variable called My_Win whose value corresponds to the My_Win

structure. This would permit one to access the �elds of My_Window via S-Lang statements such as

define set_width_and_height (w,h)

{

My_Win.width = w;

My_Win.height = h;

}

It is extremely important to understand that the interface described in this section does not allow

the interpreter to create new instances of Window_Type objects. The interface merely de�nes an

association or correspondence between an intrinsic structure pointer and a S-Lang variable. For

example, if the value of My_Window is NULL, then My_Win would also be NULL.

One should be careful in allowing read/write access to character string �elds. If read/write

access is allowed, then the application should always use the SLang_create_slstring and

SLang_free_slstring functions to set the character string �eld of the structure.

4.6 Signals

If your program that embeds the interpreter processes signals, then it may be undesirable to allow

access to all signals from the interpreter. For example, if your program has a signal handler for

SIGHUP then it is possible that an interpreter script could specify a di�erent signal handler, which

may or may not be desirable. If you do not want to allow the interpreter access to some signal, then

that signal can be made o�-limits to the interpreter via the SLsig_forbid_signal function:

/* forbid a signal handler for SIGHUP */

SLsig_forbid_signal (SIGHUP, 1);

/* Allow a signal handler for SIGTERM */

SLsig_forbid_signal (SIGTERM, 0);

By default, all signals are allowed access from the interpreter.

4.7 Exceptions

24 Chapter 4. Interpreter Interface

Chapter 5

Keyboard Interface

S-Lang's keyboard interface has been designed to allow an application to read keyboard input from

the user in a system-independent manner. The interface consists of a set of low routines for reading

single character data as well as a higher level interface (SLkp) which utilize S-Lang's keymap facility

for reading multi-character sequences.

To initialize the interface, one must �rst call the function SLang_init_tty. Before exiting the

program, the function SLang_reset_tty must be called to restore the keyboard interface to its

original state. Once initialized, the low-level SLang_getkey function may be used to read single

keyboard characters from the terminal. An application using the higher-level SLkp interface will

read charcters using the SLkp_getkey function.

In addition to these basic functions, there are also functions to �unget� keyboard characters, �ush

the input, detect pending-input with a timeout, etc. These functions are de�ned below.

5.1 Initializing the Keyboard Interface

The function SLang_init_tty must be called to initialize the terminal for single character input.

This puts the terminal in a mode usually referred to as �raw� mode.

The prototype for the function is:

int SLang_init_tty (int abort_char, int flow_ctrl, int opost);

It takes three parameters that are used to specify how the terminal is to be initialized.

The �rst parameter, abort_char, is used to specify the interrupt character (SIGINT). Under MSDOS,

this value corresponds to the scan code of the character that will be used to generate the interrupt.

For example, under MSDOS, 34 should be used to make Ctrl-G generate an interrupt signal since

34 is the scan code for G. On other systems, the value of abort_char will simply be the ascii value

of the control character that will be used to generate the interrupt signal, e.g., 7 for Ctrl-G. If -1

is passed, the interrupt character will not be changed.

Pressing the interrupt character speci�ed by the �rst argument will generate a signal (SIGINT) that

may or not be caught by the application. It is up to the application to catch this signal. S-Lang

provides the function Slang_set_abort_signal to make it easy to facilitate this task.

25

26 Chapter 5. Keyboard Interface

The second parameter is used to specify whether or not �ow control should be used. If this parameter

is zero, �ow control is enabled. If the value is positive, �ow control will be disabled. Disabling

�ow control is necessary to pass certain characters to the application (e.g., Ctrl-S and Ctrl-Q).

Otherwise, the value is negative and the �ow control behavior will be inherited from the terminal.

The latter interpretation was added to version 2.3.0 of the library; earlier versions disabled �ow

control for both positive and negative values of this parameter. For some systems such as MSDOS,

this parameter is meaningless.

The third parameter, opost, is used to turn output processing on or o�. If opost is zero, output

processing is not turned on otherwise, output processing is turned on.

The SLang_init_tty function returns -1 upon failure. In addition, after it returns, the S-Lang

global variable SLang_TT_Baud_Rate will be set to the baud rate of the terminal if this value can

be determined.

Example:

if (-1 == SLang_init_tty (7, 0, 0)) /* For MSDOS, use 34 as scan code */

{

fprintf (stderr, "Unable to initialize the terminal.\n");

exit (1);

}

SLang_set_abort_signal (NULL);

Here the terminal is initialized such that �ow control and output processing are turned o�. In

addition, the character Ctrl-G1 has been speci�ed to be the interrupt character. The function

SLang_set_abort_signal is used to install the default S-Lang interrupt signal handler.

5.2 Resetting the Keyboard Interface

The function SLang_reset_tty must be called to reset the terminal to the state it was in before the

call to SLang_init_tty. The prototype for this function is:

void SLang_reset_tty (void);

Usually this function is only called before the program exits. However, if the program is suspended

it should also be called just before suspension.

5.3 Initializing the SLkp Routines

Extra initialization of the higher-level SLkp functions are required because they are layered on top

of the lower level routines. Since the SLkp_getkey function is able to process function and arrow

keys in a terminal independent manner, it is necessary to call the SLtt_get_terminfo function to

get information about the escape character sequences that the terminal's function keys send. Once

that information is available, the SLkp_init function can construct the proper keymaps to process

the escape sequences.

1For MSDOS systems, use the scan code 34 instead of 7 for Ctrl-G

5.4. Setting the Interrupt Handler 27

This part of the initialization process for an application using this interface will look something like:

SLtt_get_terminfo ();

if (-1 == SLkp_init ())

{

SLang_doerror ("SLkp_init failed.");

exit (1);

}

if (-1 == SLang_init_tty (-1, 0, 1))

{

SLang_doerror ("SLang_init_tty failed.");

exit (1);

}

It is important to check the return status of the SLkp_init function which can failed if it cannot

allocate enough memory for the keymap.

5.4 Setting the Interrupt Handler

The function SLang_set_abort_signal may be used to associate an interrupt handler with the in-

terrupt character that was previously speci�ed by the SLang_init_tty function call. The prototype

for this function is:

void SLang_set_abort_signal (void (*)(int));

This function returns nothing and takes a single parameter which is a pointer to a function taking an

integer value and returning void. If a NULL pointer is passed, the default S-Lang interrupt handler

will be used. The S-Lang default interrupt handler under Unix looks like:

static void default_sigint (int sig)

{

SLsignal_intr (SIGINT, default_sigint);

SLKeyBoard_Quit = 1;

if (SLang_Ignore_User_Abort == 0)

SLang_set_error (SL_UserBreak_Error);

}

It simply sets the global variable SLKeyBoard_Quit to one and if the variable

SLang_Ignore_User_Abort is non-zero, the error state is set to indicate a user break condi-

tion. (The function SLsignal_intr is similar to the standard C signal function except that

it will interrupt system calls. Some may not like this behavior and may wish to call this

SLang_set_abort_signal with a di�erent handler.)

Although the function expressed above is speci�c to Unix, the analogous routines for other operating

systems are equivalent in functionality even though the details of the implementation may vary

drastically (e.g., under MSDOS, the hardware keyboard interrupt int 9h is hooked).

28 Chapter 5. Keyboard Interface

5.5 Reading Keyboard Input with SLang_getkey

After initializing the keyboard via SLang_init_tty, the S-Lang function SLang_getkey may be

used to read characters from the terminal interface. In addition, the function SLang_input_pending

may be used to determine whether or not keyboard input is available to be read.

These functions have prototypes:

unsigned int SLang_getkey (void);

int SLang_input_pending (int tsecs);

The SLang_getkey function returns a single character from the terminal. Upon failure, it re-

turns 0xFFFF. If the interrupt character speci�ed by the SLang_init_tty function is pressed while

this function is called, the function will return the value of the interrupt character and set the

S-Lang global variable SLKeyBoard_Quit to a non-zero value. In addition, if the default S-

Lang interrupt handler has been speci�ed by a NULL argument to the SLang_set_abort_signal

function, the error state of the library will be set to SL_UserBreak_Error unless the variable

SLang_Ignore_User_Abort is non-zero.

The SLang_getkey function waits until input is available to be read. The SLang_input_pending

function may be used to determine whether or not input is ready. It takes a single parameter that

indicates the amount of time to wait for input before returning with information regarding the

availability of input. This parameter has units of one tenth (1/10) of a second, i.e., to wait one

second, the value of the parameter should be 10. Passing a value of zero causes the function to

return right away. SLang_input_pending returns a positive integer if input is available or zero if

input is not available. It will return -1 if an error occurs.

Here is a simple example that reads keys from the terminal until one presses Ctrl-G or until 5

seconds have gone by with no input:

#include <stdio.h>

#include <slang.h>

int main ()

{

int abort_char = 7; /* For MSDOS, use 34 as scan code */

unsigned int ch;

if (-1 == SLang_init_tty (abort_char, 0, 1))

{

fprintf (stderr, "Unable to initialize the terminal.\n");

exit (-1);

}

SLang_set_abort_signal (NULL);

while (1)

{

fputs ("\nPress any key. To quit, press Ctrl-G: ", stdout);

fflush (stdout);

if (SLang_input_pending (50) == 0) /* 50/10 seconds */

{

fputs ("Waited too long! Bye\n", stdout);

break;

5.6. Reading Keyboard Input with SLkp_getkey 29

}

ch = SLang_getkey ();

if (SLang_get_error () == SL_UserBreak_Error)

{

fputs ("Ctrl-G pressed! Bye\n", stdout);

break;

}

putc ((int) ch, stdout);

}

SLang_reset_tty ();

return 0;

}

5.6 Reading Keyboard Input with SLkp_getkey

Unlike the low-level function SLang_getkey, the SLkp_getkey function can read a multi-character

sequence associated with function keys. The SLkp_getkey function uses SLang_getkey and S-

Lang's keymap facility to process escape sequences. It returns a single integer which describes the

key that was pressed:

int SLkp_getkey (void);

That is, the SLkp_getkey function simple provides a mapping between keys and integers. In this

context the integers are called keysyms.

For single character input such as generated by the a key on the keyboard, the function returns the

character that was generated, e.g., 'a'. For single characters, SLkp_getkey will always return an

keysym whose value ranges from 0 to 256. For keys that generate multiple character sequences, e.g.,

a function or arrow key, the function returns an keysym whose value is greater that 256. The actual

values of these keysyms are represented as macros de�ned in the slang.h include �le. For example,

the up arrow key corresponds to the keysym whose value is SL_KEY_UP.

Since it is possible for the user to enter a character sequence that does not correspond to any key.

If this happens, the special keysym SL_KEY_ERR will be returned.

Here is an example of how SLkp_getkey may be used by a �le viewer:

switch (SLkp_getkey ())

{

case ' ':

case SL_KEY_NPAGE:

next_page ();

break;

case 'b':

case SL_KEY_PPAGE:

previous_page ();

break;

case '\r':

case SL_KEY_DOWN:

30 Chapter 5. Keyboard Interface

next_line ();

break;

.

.

case SL_KEY_ERR:

default:

SLtt_beep ();

}

Unlike its lower-level counterpart, SLang_getkey, there do not yet exist any functions in the library

that are capable of �ungetting� keysyms. In particular, the SLang_ungetkey function will not work.

5.7 Bu�ering Input

S-Lang has several functions pushing characters back onto the input stream to be read again later

by SLang_getkey. It should be noted that none of the above functions are designed to push back

keysyms read by the SLkp_getkey function. These functions are declared as follows:

void SLang_ungetkey (unsigned char ch);

void SLang_ungetkey_string (unsigned char *buf, int buflen);

void SLang_buffer_keystring (unsigned char *buf, int buflen);

SLang_ungetkey is the most simple of the three functions. It takes a single character a pushes it

back on to the input stream. The next call to SLang_getkey will return this character. This function

may be used to peek at the character to be read by �rst reading it and then putting it back.

SLang_ungetkey_string has the same function as SLang_ungetkey except that it is able to push

more than one character back onto the input stream. Since this function can push back null (ascii

0) characters, the number of characters to push is required as one of the parameters.

The last of these three functions, SLang_buffer_keystring can handle more than one charater but

unlike the other two, it places the characters at the end of the keyboard bu�er instead of at the

beginning.

Note that the use of each of these three functions will cause SLang_input_pending to return right

away with a non-zero value.

Finally, the S-Lang keyboard interface includes the function SLang_flush_input with prototype

void SLang_flush_input (void);

It may be used to discard all input.

Here is a simple example that looks to see what the next key to be read is if one is available:

int peek_key ()

{

int ch;

if (SLang_input_pending (0) == 0) return -1;

ch = SLang_getkey ();

SLang_ungetkey (ch);

5.8. Global Variables 31

return ch;

}

5.8 Global Variables

Although the following S-Lang global variables have already been mentioned earlier, they are gath-

ered together here for completeness.

int SLang_Ignore_User_Abort; If non-zero, pressing the interrupt character will not result in the

libraries error state set to SL_UserBreak_Error.

volatile int SLKeyBoard_Quit; This variable is set to a non-zero value when the interrupt char-

acter is pressed. If the interrupt character is pressed when SLang_getkey is called, the interrupt

character will be returned from SLang_getkey.

int SLang_TT_Baud_Rate; On systems which support it, this variable is set to the value of the

terminal's baud rate after the call to SLang_init_tty.

32 Chapter 5. Keyboard Interface

Chapter 6

Readline Interface

The S-Lang library includes simple but capable readline functionality in its SLrline layer. The

SLrline routines provide a simple mechanism for an application to get prompted input from a user

with command line editing, completions, and history recall.

The use of the SLrline routines will be illustrated with a few simple examples. All of the examples

given in this section may be found in the �le demo/rline.c in the S-Lang source code distribution.

For clarity, the code shown below omits most error checking.

6.1 Introduction

The �rst example simply reads input from the user until the user enters quit:

SLrline_Type *rl;

SLang_init_tty (-1, 0, 1);

rl = SLrline_open (80, SL_RLINE_BLINK_MATCH);

while (1)

{

char *line;

unsigned int len;

line = SLrline_read_line (rl, "prompt>", &len);

if (line == NULL) break;

if (0 == strcmp (line, "quit"))

{

SLfree (line);

break;

}

(void) fprintf (stdout, "\nRead %d bytes: %s\n", strlen(line), line);

SLfree (line);

}

SLrline_close (rl);

SLang_reset_tty ();

33

34 Chapter 6. Readline Interface

In this example, the SLtt interface functions SLang_init_tty and SLang_reset_tty functions have

been used to open and close the terminal for reading input. By default, the SLrline functions use

the SLang_getkey function to read characters and assume that the terminal has been properly

initialized before use.

The SLrline_open function was used to create an instance of an SLrline_Type object. The function

takes two arguments: and edit window display width (80 above), and a set of �ags. In this case,

the SL_RLINE_BLINK_MATCH �ags has been used to turn on parenthesis blinking. Once �nished, the

SLrline_Type object must be freed using the SLrline_close function.

The actual reading of the line occurs in the SLrline_read_line function, which takes an

SLrline_Type instance and a string representing the prompt to be used. The line itself is re-

turned as a malloced char * and must be freed using the SLfree function after used. The length

(in bytes) of the line is returned via the parameter list.

If an end-of-�le character (�D on Unix) was entered at the beginning of a line, the

SLrline_read_line function will return NULL. However, it also return NULL if an error of some

sort was encountered. The only way to tell the di�erence between these two conditions is to call

SLang_get_error.

The above code fragment did not provide for any sort of SIGINT handling. Without such a provision,

pressing �C at the prompt could be enough to kill the application. This is especially undesirable

if one wants to press �C to abort the call to SLrline_read_line. The function example_2 in

demo/rline.c shows code to handle this situation as well as distinguish between EOF and other

errors.

6.2 Interpreter Interface

SLrline features such as command-line completion, vi-emulation, and so on are implemented

through callbacks or hooks from the SLrline functions to the S-Lang interpreter. Hence, this

functionality is only available to applications that make use of the interpreter.

TBD...

Chapter 7

Screen Management

The S-Lang library provides two interfaces to terminal independent routines for manipulating the

display on a terminal. The highest level interface, known as the SLsmg interface is discussed in

this section. It provides high level screen management functions for manipulating the display in

an optimal manner and is similar in spirit to the curses library. The lowest level interface, or the

SLtt interface, is used by the SLsmg routines to actually perform the task of writing to the display.

This interface is discussed in another section. Like the keyboard routines, the SLsmg routines are

platform independent and work the same on MSDOS, OS/2, Unix, and VMS.

The screen management, or SLsmg, routines are initialized by function SLsmg_init_smg. Once

initialized, the application uses various SLsmg functions to write to a virtual display. This does not

cause the physical terminal display to be updated immediately. The physical display is updated to

look like the virtual display only after a call to the function SLsmg_refresh. Before exiting, the

application using these routines is required to call SLsmg_reset_smg to reset the display system.

The following subsections explore S-Lang's screen management system in greater detail.

7.1 Initialization

The function SLsmg_init_smg must be called before any other SLsmg function can be used. It has

the simple prototype:

int SLsmg_init_smg (void);

It returns zero if successful or -1 if it cannot allocate space for the virtual display.

For this routine to properly initialize the virtual display, the capabilities of the terminal must be

known as well as the size of the physical display. For these reasons, the lower level SLtt routines

come into play. In particular, before the �rst call to SLsmg_init_smg, the application is required to

call the function SLtt_get_terminfo before calling SLsmg_init_smg.

The SLtt_get_terminfo function sets the global variables SLtt_Screen_Rows and

SLtt_Screen_Cols to the values appropriate for the terminal. It does this by calling the

SLtt_get_screen_size function to query the terminal driver for the appropriate values for these

variables. From this point on, it is up to the application to maintain the correct values for these

35

36 Chapter 7. Screen Management

variables by calling the SLtt_get_screen_size function whenever the display size changes, e.g.,

in response to a SIGWINCH signal. Finally, if the application is going to read characters from the

keyboard, it is also a good idea to initialize the keyboard routines at this point as well.

7.2 Resetting SLsmg

Before the program exits or suspends, the function SLsmg_reset_smg should be called to shutdown

the display system. This function has the prototype

void SLsmg_reset_smg (void);

This will deallocate any memory allocated for the virtual screen and reset the terminal's display.

Basically, a program that uses the SLsmg screen management functions and S-Lang's keyboard

interface will look something like:

#include <slang.h>

int main ()

{

SLtt_get_terminfo ();

SLang_init_tty (-1, 0, 0);

SLsmg_init_smg ();

/* do stuff */

SLsmg_reset_smg ();

SLang_reset_tty ();

return 0;

}

If this program is compiled and run, all it will do is clear the screen and position the cursor at the

bottom of the display. In the following sections, other SLsmg functions will be introduced which may

be used to make this simple program do much more.

7.3 Handling Screen Resize Events

The function SLsmg_reinit_smg is designed to be used in conjunction with resize events.

Under Unix-like operating systems, when the size of the display changes, the application will be sent

a SIGWINCH signal. To properly handle this signal, the SLsmg routines must be reinitialized to use

the new display size. This may be accomplished by calling SLtt_get_screen_size to get the new

size, followed by SLsmg_reinit_smg to reinitialize the SLsmg interface to use the new size. Keep in

mind that these routines should not be called from within the signal handler. The following code

illustrates the main ideas involved in handling such events:

static volatile int Screen_Size_Changed;

static sigwinch_handler (int sig)

{

7.4. SLsmg Functions 37

Screen_Size_Changed = 1;

SLsignal (SIGWINCH, sigwinch_handler);

}

int main (int argc, char **argv)

{

SLsignal (SIGWINCH, sigwinch_handler);

SLsmg_init_smg ();

.

.

/* Now enter main loop */

while (not_done)

{

if (Screen_Size_Changed)

{

SLtt_get_screen_size ();

SLsmg_reinit_smg ();

redraw_display ();

}

.

.

}

return 0;

}

7.4 SLsmg Functions

In the previous sections, functions for initializing and shutting down the SLsmg routines were dis-

cussed. In this section, the rest of the SLsmg functions are presented. These functions act only on

the virtual display. The physical display is updated when the SLsmg_refresh function is called and

not until that time. This function has the simple prototype:

void SLsmg_refresh (void);

7.4.1 Positioning the cursor

The SLsmg_gotorc function is used to position the cursor at a given row and column. The prototype

for this function is:

void SLsmg_gotorc (int row, int col);

The origin of the screen is at the top left corner and is given the coordinate (0, 0), i.e., the top row

of the screen corresponds to row = 0 and the �rst column corresponds to col = 0. The last row of

the screen is given by row = SLtt_Screen_Rows - 1.

It is possible to change the origin of the coordinate system by using the function

SLsmg_set_screen_start with prototype:

void SLsmg_set_screen_start (int *r, int *c);

38 Chapter 7. Screen Management

This function takes pointers to the new values of the �rst row and �rst column. It returns the

previous values by modifying the values of the integers at the addresses speci�ed by the parameter

list. A NULL pointer may be passed to indicate that the origin is to be set to its initial value of 0.

For example,

int r = 10;

SLsmg_set_screen_start (&r, NULL);

sets the origin to (10, 0) and after the function returns, the variable r will have the value of the

previous row origin.

7.4.2 Writing to the Display

SLsmg has several routines for outputting text to the virtual display. The following points should be

understood:

• The text is output at the position of the cursor of the virtual display and the cursor is advanced

to the position that corresponds to the end of the text.

• Text does not wrap at the boundary of the display� it is trucated. This behavior seems to

be more useful in practice since most programs that would use screen management tend to be

line oriented.

• Control characters are displayed in a two character sequence representation with � as the �rst

character. That is, Ctrl-X is output as �X.

• The behavior of the newline character depends upon the value of the SLsmg_Newline_Behavior

variable. It may be set to any one of the following values:

SLSMG_NEWLINE_IGNORED : If a newline character is encountered when writing a string to the

virtual display, the characters in the string following the newline character will not be written.

In other words, the newline character will act like a string termination character. This is the

default setting for the SLsmg_Newline_Behavior.

SLSMG_NEWLINE_MOVES : If a newline character is when writing to the virtual display, the

following characters will be written to the beginning of the next row.

SLSMG_NEWLINE_SCROLLS : When set to this value and a newline character is output at the

bottom of the virtual display, the display will scroll up. Otherwise the behavior will be the

same as that of SLSMG_NEWLINE_MOVES.

SLSMG_NEWLINE_PRINTABLE : When set to this value, a newline character will be printed as

the two characters sequence �J.

Although the some of the above items might appear to be too restrictive, in practice this is not seem

to be the case. In fact, the design of the output routines was in�uenced by their actual use and

modi�ed to simplify the code of the application utilizing them.

void SLsmg_write_char (char ch);

Write a single character to the virtual display.

7.4. SLsmg Functions 39

void SLsmg_write_nchars (char *str, int len);

Write len characters pointed to by str to the virtual display.

void SLsmg_write_string (char *str);

Write the null terminated string given by pointer str to the virtual display. This function is

a wrapper around SLsmg_write_nchars.

void SLsmg_write_nstring (char *str, int n);

The purpose of this function is to write a null terminated string to a �eld that is at most n

cells wide. Each double-wide character in the string will use two cells. If the string is not big

enough to �ll the n cells, the rest of the cells will be �lled with space characters. This function

is a wrapper around SLsmg_write_wrapped_string.

void SLsmg_write_wrapped_string(SLuchar_Type *str, int r, int c, unsigned int dr, unsigned int dc, int fill)

The purpose of this function is to write a string str to a box de�ned by rows and columns

satisfying r<=row<r+dc and c<=column<c+dc. The string will be wrapped at the column

boundaries of the box and truncated if its size exceeds to size of the box. If the total size of

the string is less than that of the box, and the fill parameter is non-zero, then the rest of

the cells in the box will be �lled with space characters. Currently the wrapping algorithm is

very simple and knows nothing about word boundaries.

void SLsmg_printf (char *fmt, ...);

This function is similar to printf except that it writes to the SLsmg virtual display.

void SLsmg_vprintf (char *, va_list);

Like SLsmg_printf but uses a variable argument list.

7.4.3 Erasing the Display

The following functions may be used to �ll portions of the display with blank characters. The

attributes of blank character are the current attributes. (See below for a discussion of character

attributes)

void SLsmg_erase_eol (void);

Erase line from current position to the end of the line.

void SLsmg_erase_eos (void);

Erase from the current position to the end of the screen.

void SLsmg_cls (void);

Clear the entire virtual display.

40 Chapter 7. Screen Management

7.4.4 Setting Character Attributes

Character attributes de�ne the visual characteristics the character possesses when it is displayed.

Visual characteristics include the foreground and background colors as well as other attributes such

as blinking, bold, and so on. Since SLsmg takes a di�erent approach to this problem than other

screen management libraries an explanation of this approach is given here. This approach has been

motivated by experience with programs that require some sort of screen management.

Most programs that use SLsmg are composed of speci�c textual objects or objects made up of line

drawing characters. For example, consider an application with a menu bar with drop down menus.

The menus might be enclosed by some sort of frame or perhaps a shadow. The basic idea is to

associate an integer to each of the objects (e.g., menu bar, shadow, current menu item, etc.) and

create a mapping from the integer to the set of attributes. In the terminology of SLsmg, the integer

is simply called an object .

For example, the menu bar might be associated with the object 1, the drop down menu could be

object 2, the shadow could be object 3, and so on.

The range of values for the object integer is restricted from 0 up to and including 255 on all systems

except MSDOS where the maximum allowed integer is 151. The object numbered zero should not

be regarding as an object at all. Rather it should be regarded as all other objects that have not

explicitly been given an object number. SLsmg, or more precisely SLtt, refers to the attributes of

this special object as the default or normal attributes.

The SLsmg routines know nothing about the mapping of the color to the attributes associated with

the color. The actual mapping takes place at a lower level in the SLtt routines. Hence, to map an

object to the actual set of attributes requires a call to any of the following SLtt routines:

void SLtt_set_color (int obj, char *name, char *fg, char *bg);

void SLtt_set_color_object (int obj, SLtt_Char_Type attr);

void SLtt_set_mono (int obj, char *, SLtt_Char_Type attr);

Only the �rst of these routines will be discussed brie�y here. The latter two functions allow more

�ne control over the object to attribute mapping (such as assigning a �blink� attribute to the object).

For a more full explanation on all of these routines see the section about the SLtt interface.

The SLtt_set_color function takes four parameters. The �rst parameter, obj, is simply the integer

of the object for which attributes are to be assigned. The second parameter is currently unused by

these routines. The third and forth parameters, fg and bg, are the names of the foreground and

background color to be used associated with the object. The strings that one can use for the third

and fourth parameters can be any one of the 16 colors:

"black" "gray"

"red" "brightred"

"green" "brightgreen"

"brown" "yellow"

"blue" "brightblue"

"magenta" "brightmagenta"

"cyan" "brightcyan"

1This di�erence is due to memory constraints imposed by MSDOS. This restriction might be removed in

a future version of the library.

7.4. SLsmg Functions 41

"lightgray" "white"

The value of the foreground parameter fg can be anyone of these sixteen colors. However, on most

terminals, the background color will can only be one of the colors listed in the �rst column2.

Of course not all terminals are color terminals. If the S-Lang global variable SLtt_Use_Ansi_Colors

is non-zero, the terminal is assumed to be a color terminal. The SLtt_get_terminfo will try to

determine whether or not the terminal supports colors and set this variable accordingly. It does

this by looking for the capability in the terminfo/termcap database. Unfortunately many Unix

databases lack this information and so the SLtt_get_terminfo routine will check whether or not

the environment variable COLORTERM exists. If it exists, the terminal will be assumed to support

ANSI colors and SLtt_Use_Ansi_Colors will be set to one. Nevertheless, the application should

provide some other mechanism to set this variable, e.g., via a command line parameter.

When the SLtt_Use_Ansi_Colors variable is zero, all objects with numbers greater than one will

be displayed in inverse video3.

With this background, the SLsmg functions for setting the character attributes can now be de�ned.

These functions simply set the object attributes that are to be assigned to subsequent characters

written to the virtual display. For this reason, the new attribute is called the current attribute.

void SLsmg_set_color (int obj);

Set the current attribute to those of object obj.

void SLsmg_normal_video (void);

This function is equivalent to SLsmg_set_color (0).

void SLsmg_reverse_video (void);

This function is equivalent to SLsmg_set_color (1). On monochrome terminals, it is equiv-

alent to setting the subsequent character attributes to inverse video.

Unfortunately there does not seem to be a standard way for the application or, in particular, the

library to determine which color will be used by the terminal for the default background. Such

information would be useful in initializing the foreground and background colors associated with

the default color object (0). For this reason, it is up to the application to provide some means for

the user to indicate what these colors are for the particular terminal setup. To facilitate this, the

SLtt_get_terminfo function checks for the existence of the COLORFGBG environment variable. If this

variable exists, its value will be used to initialize the colors associated with the default color object.

Speci�cally, the value is assumed to consist of a foreground color name and a background color name

separated by a semicolon. For example, if the value of COLORFGBG is lightgray;blue, the default

color object will be initialized to represent a lightgray foreground upon a blue background.

7.4.5 Lines and Alternate Character Sets

The S-Lang screen management library also includes routines for turning on and turning o� alter-

nate character sets. This is especially useful for drawing horizontal and vertical lines.

2This is also true on the Linux console. However, it need not be the case and hopefully the designers of

Linux will someday remove this restriction.
3This behavior can be modi�ed by using the SLtt_set_mono function call.

42 Chapter 7. Screen Management

void SLsmg_set_char_set (int flag);

If flag is non-zero, subsequent write functions will use characters from the alternate character

set. If flag is zero, the default, or, ordinary character set will be used.

void SLsmg_draw_hline (int len);

Draw a horizontal line from the current position to the column that is len characters to the

right.

void SLsmg_draw_vline (int len);

Draw a horizontal line from the current position to the row that is len rows below.

void SLsmg_draw_box (int r, int c, int dr, int dc);

Draw a box whose upper right corner is at row r and column c. The box spans dr rows and

dc columns. The current position will be left at row r and column c.

7.4.6 Miscellaneous Functions

void SLsmg_touch_lines (int r, int n);

Mark screen rows numbered r, r + 1, ... r + (n - 1) as modi�ed. When SLsmg_refresh is

called, these rows will be completely redrawn.

int SLsmg_char_at(SLsmg_Char_Type *ch);

Returns the character and its attributes at the current position. The SLsmg_Char_Type

object is a structure representing the character cell:

#define SLSMG_MAX_CHARS_PER_CELL 5

typedef struct

{

unsigned int nchars;

SLwchar_Type wchars[SLSMG_MAX_CHARS_PER_CELL];

SLsmg_Color_Type color;

}

SLsmg_Char_Type;

Normally the value of the nchars �eld will be 1 to indicate that the character contains precisely

one character whose value is given by the zeroth element of the wchars array of the structure.

The value of nchars will be greater than one if the character cell also contains so-called

Unicode combining characters. The combining characters are given by the elements 1 through

nchars-1 of the wchars array. If nchars is 0, then the character cell represents the second

half of a double-wide character.

The color �eld repesents both the color of the character cell and the alternate character

set setting of the cell. This value may be bitwise-anded with SLSMG_COLOR_MASK to obtain

the cell's color, and bitwise-anded with SLSMG_ACS_MASK to determine whether or not the

alternate-character set setting is in e�ect for the cell (zero or non-zero).

7.5. Variables 43

7.5 Variables

The following S-Lang global variables are used by the SLsmg interface. Some of these have been

previously discussed.

int SLtt_Screen_Rows; int SLtt_Screen_Cols; The number of rows and columns of the physical

display. If either of these numbers changes, the functions SLsmg_reset_smg and SLsmg_init_smg

should be called again so that the SLsmg routines can re-adjust to the new size.

int SLsmg_Tab_Width; Set this variable to the tab width that will be used when expanding tab

characters. The default is 8.

int SLsmg_Display_Eight_Bit; This variable determines how characters with the high bit set are

to be output. Speci�cally, a character with the high bit set with a value greater than or equal to

this value is output as is; otherwise, it will be output in a 7-bit representation. The default value for

this variable is 128 for MSDOS and 160 for other systems (ISO-Latin). In UTF-8 mode, the value

of this variable is 0.

int SLtt_Use_Ansi_Colors; If this value is non-zero, the terminal is assumed to support ANSI

colors otherwise it is assumed to be monochrome. The default is 0.

int SLtt_Term_Cannot_Scroll; If this value is zero, the SLsmg will attempt to scroll the physical

display to optimize the update. If it is non-zero, the screen management routines will not perform

this optimization. For some applications, this variable should be set to zero. The default value is

set by the SLtt_get_terminfo function.

7.6 Hints for using SLsmg

This section discusses some general design issues that one must face when writing an application

that requires some sort of screen management.

44 Chapter 7. Screen Management

Chapter 8

Signal Functions

Almost all non-trivial programs must worry about signals. This is especially true for programs that

use the S-Lang terminal input/output and screen management routines. Unfortunately, there is no

�xed way to handle signals; otherwise, the Unix kernel would take care of all issues regarding signals

and the application programmer would never have to worry about them. For this reason, none of

the routines in the S-Lang library catch signals; however, some of the routines block the delivery of

signals during crucial moments. It is up to the application programmer to install handlers for the

various signals of interest.

If the application makes use of the interpreter, then a signal handler for SIGINT should be installed

to allow the user to break out of the interpreter via, e.g., Ctrl-C. In order for this to work, the

signal handler should call SLang_set_error to generate a SL_UserBreak_Error exception, i.e.,

void sigint_handler (int sig)

{

if (SLang_Ignore_User_Abort == 0)

SLang_set_error (SL_UserBreak_Error);

}

Applications that use the tty getkey routines or the screen management routines must worry about

signals such as:

SIGINT interrupt

SIGTSTP stop

SIGQUIT quit

SIGTTOU background write

SIGTTIN background read

SIGWINCH window resize

It is important that handlers be established for these signals while the either the SLsmg routines or

the getkey routines are initialized. The SLang_init_tty, SLang_reset_tty, SLsmg_init_smg, and

SLsmg_reset_smg functions block these signals from occurring while they are being called.

Since a signal can be delivered at any time, it is important for the signal handler to call only

functions that can be called from a signal handler. This usually means that such function must be

re-entrant. In particular, the SLsmg routines are not re-entrant; hence, they should not be called

45

46 Chapter 8. Signal Functions

when a signal is being processed unless the application can ensure that the signal was not delivered

while an SLsmg function was called. This statement applies to many other functions such as malloc,

or, more generally, any function that calls malloc. The upshot is that the signal handler should not

attempt to do too much except set a global variable for the application to look at while not in a

signal handler.

The S-Lang library provides two functions for blocking and unblocking the above signals:

int SLsig_block_signals (void);

int SLsig_unblock_signals (void);

It should be noted that for every call to SLsig_block_signals, a corresponding call should be made

to SLsig_unblock_signals, e.g.,

void update_screen ()

{

SLsig_block_signals ();

/* Call SLsmg functions */

.

.

SLsig_unblock_signals ();

}

See demo/pager.c for examples.

Chapter 9

Searching Functions

The S-Lang library incorporates two types of searches: Regular expression pattern matching and

ordinary searching.

9.1 Simple Searches

S-Lang's SLsearch interface functions a convenient interface to the famous Boyer-Moore fast

searching algrothim. The searches can go in either a forward or backward direction and and may be

performed with or without regard to case. Moreover, UTF-8 encoded strings are fully supported by

the interface.

9.2 Regular Expressions

!!! No documentation available yet !!!

47

48 Chapter 9. Searching Functions

Appendix A

S-Lang 2 API NEWS and

UPGRADE information

The S-Lang API underwent a number of changes for version 2. In particular, the following interfaces

have been a�ected:

SLsmg

SLregexp

SLsearch

SLrline

SLprep

slang interpreter modules

Detailed information about these changes is given below. Other changes include:

• UTF-8 encoded strings are now supported at both the C library level and the interpreter.

• Error handling by the interpreter has been rewritten to support try/catch style exception.

Applications may also de�ne application-speci�c error codes.

• The library may be compiled with large-�le-support.

See the relevant chapters in this manual for more information.

A.1 SLang_Error

The SLang_Error variable is nolonger part of the API. Change code such as

SLang_Error = foo;

if (SLang_Error == bar) ...

to

SLang_set_error (foo);

if (bar == SLang_get_error ()) ...

49

50 Appendix A. S-Lang 2 API NEWS and UPGRADE information

A.2 SLsmg/SLtt Functions

The changes to these functions were dictated by the new UTF-8 support. For the most part, the

changes should be transparent but some functions and variables have been changed.

• SLtt_Use_Blink_For_ACS is nolonger supported, nor necessary I think only DOSEMU uses

this.

• Prototypes for SLsmg_draw_object and SLsmg_write_char were changed to use wide charac-

ters (SLwchar_Type).

• SLsmg_Char_Type was changed from an unsigned short to a structure. This change was

necessary in order to support combining characters and double width unicode characters. This

change may a�ect the use of the following functions:

SLsmg_char_at

SLsmg_read_raw

SLsmg_write_raw

SLsmg_write_color_chars

• The SLSMG_BUILD_CHAR macro has been removed. The SLSMG_EXTRACT_CHAR macro will con-

tinue to work as long as combining characters are not present.

• The prototype for SLsmg_char_at was changed to

int SLsmg_char_at (SLsmg_Char_Type *);

A.3 SLsearch Functions

SLsearch_Type is now an opaque type. Code such as

SLsearch_Type st;

SLsearch_init (string, 1, 0, &st);

.

.

s = SLsearch (buf, bufmax, &st);

which searches forward in buf for string must be changed to

SLsearch_Type *st = SLsearch_open (string, SLSEARCH_CASELESS);

if (st == NULL)

return;

.

.

s = SLsearch_forward (st, buf, bufmax);

.

.

SLsearch_close (st);

A.4. Regular Expression Functions 51

A.4 Regular Expression Functions

The slang v1 regular expression API has been redesigned in order to facilitate the incorporation of

third party regular expression engines.

New functions include:

SLregexp_compile

SLregexp_free

SLregexp_match

SLregexp_nth_match

SLregexp_get_hints

The plan is to migrate to the use of the PCRE regular expressions for version 2.2. As such, you may

�nd it convenient to adopt the PCRE library now instead of updating to the changed S-Lang API.

A.5 Readline Functions

The readline interface has changed in order to make it easier to use. Using it now is as simple as:

SLrline_Type *rli;

rli = SLrline_open (SLtt_Screen_Cols, flags);

buf = SLrline_read_line (rli, prompt, &len);

/* Use buf */

.

.

SLfree (buf);

SLrline_close (rli);

See how it is used in slsh/readline.c.

A.6 Preprocessor Interface

SLPreprocess_Type was renamed to SLprep_Type and made opaque. New functions include:

SLprep_new

SLprep_delete

SLprep_set_flags

SLprep_set_comment

SLprep_set_prefix

SLprep_set_exists_hook

SLprep_set_eval_hook

If you currently use:

SLPreprocess_Type pt;

SLprep_open_prep (&pt);

.

52 Appendix A. S-Lang 2 API NEWS and UPGRADE information

.

SLprep_close_prep (&pt);

Then change it to:

SLprep_Type *pt;

pt = SLprep_new ();

.

.

SLprep_delete (pt);

A.7 Functions dealing with the interpreter C API

• SLang_pop_double has been changed to be more like the other SLang_pop_* functions. Now,

it may be used as:

double x;

if (-1 == SLang_pop_double (&x))

.

.

• All the functions that previously took an "unsigned char" to specify a slang data type have

changed to require an SLtype. Previously, SLtype was typedefed to be an unsigned char,

but now it is an int.

• The SLang_Class_Type object is now an opaque type. If you were previously accessing its

�elds directly, then you will have to change the code to use one of the accessor functions.

A.8 Modules

• In order to support the loading of a module into multiple namespaces, a module's init function

may be called more than once. See modules/README for more information.

• The init_<module>_module function is no longer supported because it did not support names-

paces. Use the init_<module>_module_ns function instead.

Appendix B

Copyright

The S-Lang library is distributed under the terms of the GNU General Public License.

B.1 The GNU Public License

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies

of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By

contrast, the GNU General Public License is intended to guarantee your freedom to share and change

free software�to make sure the software is free for all its users. This General Public License applies

to most of the Free Software Foundation's software and to any other program whose authors commit

to using it. (Some other Free Software Foundation software is covered by the GNU Library General

Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses

are designed to make sure that you have the freedom to distribute copies of free software (and charge

for this service if you wish), that you receive source code or can get it if you want it, that you can

change the software or use pieces of it in new free programs; and that you know you can do these

things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or

to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if

you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give

the recipients all the rights that you have. You must make sure that they, too, receive or can get

the source code. And you must show them these terms so they know their rights.

53

54 Appendix B. Copyright

We protect your rights with two steps: (1) copyright the software, and (2) o�er you this license

which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands that

there is no warranty for this free software. If the software is modi�ed by someone else and passed

on, we want its recipients to know that what they have is not the original, so that any problems

introduced by others will not re�ect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger

that redistributors of a free program will individually obtain patent licenses, in e�ect making the

program proprietary. To prevent this, we have made it clear that any patent must be licensed for

everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modi�cation follow.

GNU GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright

holder saying it may be distributed under the terms of this General Public License. The "Program",

below, refers to any such program or work, and a "work based on the Program" means either the

Program or any derivative work under copyright law: that is to say, a work containing the Program

or a portion of it, either verbatim or with modi�cations and/or translated into another language.

(Hereinafter, translation is included without limitation in the term "modi�cation".) Each licensee

is addressed as "you".

Activities other than copying, distribution and modi�cation are not covered by this License; they

are outside its scope. The act of running the Program is not restricted, and the output from the

Program is covered only if its contents constitute a work based on the Program (independent of

having been made by running the Program). Whether that is true depends on what the Program

does.

1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any

medium, provided that you conspicuously and appropriately publish on each copy an appropriate

copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and

to the absence of any warranty; and give any other recipients of the Program a copy of this License

along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option o�er

warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work

based on the Program, and copy and distribute such modi�cations or work under the terms of

Section 1 above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices

stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in

whole or in part contains or is derived from the Program or any

part thereof, to be licensed as a whole at no charge to all third

parties under the terms of this License.

B.1. The GNU Public License 55

c) If the modified program normally reads commands interactively

when run, you must cause it, when started running for such

interactive use in the most ordinary way, to print or display an

announcement including an appropriate copyright notice and a

notice that there is no warranty (or else, saying that you provide

a warranty) and that users may redistribute the program under

these conditions, and telling the user how to view a copy of this

License. (Exception: if the Program itself is interactive but

does not normally print such an announcement, your work based on

the Program is not required to print an announcement.)

These requirements apply to the modi�ed work as a whole. If identi�able sections of that work are

not derived from the Program, and can be reasonably considered independent and separate works

in themselves, then this License, and its terms, do not apply to those sections when you distribute

them as separate works. But when you distribute the same sections as part of a whole which is a

work based on the Program, the distribution of the whole must be on the terms of this License,

whose permissions for other licensees extend to the entire whole, and thus to each and every part

regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely

by you; rather, the intent is to exercise the right to control the distribution of derivative or collective

works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with

a work based on the Program) on a volume of a storage or distribution medium does not bring the

other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code

or executable form under the terms of Sections 1 and 2 above provided that you also do one of the

following:

a) Accompany it with the complete corresponding machine-readable

source code, which must be distributed under the terms of Sections

1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three

years, to give any third party, for a charge no more than your

cost of physically performing source distribution, a complete

machine-readable copy of the corresponding source code, to be

distributed under the terms of Sections 1 and 2 above on a medium

customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer

to distribute corresponding source code. (This alternative is

allowed only for noncommercial distribution and only if you

received the program in object code or executable form with such

an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modi�cations to it. For

an executable work, complete source code means all the source code for all modules it contains, plus

56 Appendix B. Copyright

any associated interface de�nition �les, plus the scripts used to control compilation and installation

of the executable. However, as a special exception, the source code distributed need not include

anything that is normally distributed (in either source or binary form) with the major components

(compiler, kernel, and so on) of the operating system on which the executable runs, unless that

component itself accompanies the executable.

If distribution of executable or object code is made by o�ering access to copy from a designated place,

then o�ering equivalent access to copy the source code from the same place counts as distribution

of the source code, even though third parties are not compelled to copy the source along with the

object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided

under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is

void, and will automatically terminate your rights under this License. However, parties who have

received copies, or rights, from you under this License will not have their licenses terminated so long

as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else

grants you permission to modify or distribute the Program or its derivative works. These actions

are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the

Program (or any work based on the Program), you indicate your acceptance of this License to do so,

and all its terms and conditions for copying, distributing or modifying the Program or works based

on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient

automatically receives a license from the original licensor to copy, distribute or modify the Program

subject to these terms and conditions. You may not impose any further restrictions on the recipients'

exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties

to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason

(not limited to patent issues), conditions are imposed on you (whether by court order, agreement or

otherwise) that contradict the conditions of this License, they do not excuse you from the conditions

of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this

License and any other pertinent obligations, then as a consequence you may not distribute the

Program at all. For example, if a patent license would not permit royalty-free redistribution of the

Program by all those who receive copies directly or indirectly through you, then the only way you

could satisfy both it and this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the

balance of the section is intended to apply and the section as a whole is intended to apply in other

circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right

claims or to contest validity of any such claims; this section has the sole purpose of protecting the

integrity of the free software distribution system, which is implemented by public license practices.

Many people have made generous contributions to the wide range of software distributed through

that system in reliance on consistent application of that system; it is up to the author/donor to

decide if he or she is willing to distribute software through any other system and a licensee cannot

impose that choice.

B.1. The GNU Public License 57

This section is intended to make thoroughly clear what is believed to be a consequence of the rest

of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents

or by copyrighted interfaces, the original copyright holder who places the Program under this Li-

cense may add an explicit geographical distribution limitation excluding those countries, so that

distribution is permitted only in or among countries not thus excluded. In such case, this License

incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public

License from time to time. Such new versions will be similar in spirit to the present version, but

may di�er in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program speci�es a version number

of this License which applies to it and "any later version", you have the option of following the

terms and conditions either of that version or of any later version published by the Free Software

Foundation. If the Program does not specify a version number of this License, you may choose any

version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution

conditions are di�erent, write to the author to ask for permission. For software which is copyrighted

by the Free Software Foundation, write to the Free Software Foundation; we sometimes make ex-

ceptions for this. Our decision will be guided by the two goals of preserving the free status of all

derivatives of our free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY

FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN

OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES

PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS

TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE

PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,

REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING

WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR

REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,

INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING

OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED

TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY

YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER

PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

58 Appendix B. Copyright

If you develop a new program, and you want it to be of the greatest possible use to the public,

the best way to achieve this is to make it free software which everyone can redistribute and change

under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each

source �le to most e�ectively convey the exclusion of warranty; and each �le should have at least

the "copyright" line and a pointer to where the full notice is found.

<one line to give the program's name and a brief idea of what it does.>

Copyright (C) 19yy <name of author>

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive

mode:

Gnomovision version 69, Copyright (C) 19yy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.

This is free software, and you are welcome to redistribute it

under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate parts of the General

Public License. Of course, the commands you use may be called something other than `show w' and

`show c'; they could even be mouse-clicks or menu items�whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a

"copyright disclaimer" for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program

`Gnomovision' (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989

Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs.

If your program is a subroutine library, you may consider it more useful to permit linking proprietary

applications with the library. If this is what you want to do, use the GNU Library General Public

License instead of this License.

B.2. The Unicode Inc. Copyright 59

B.2 The Unicode Inc. Copyright

This software makes use of the Unicode tables published by Unicode, Inc under the following terms:

COPYRIGHT AND PERMISSION NOTICE

Copyright (c) 1991-2009 Unicode, Inc. All rights reserved. Distributed

under the Terms of Use in http://www.unicode.org/copyright.html.

Permission is hereby granted, free of charge, to any person

obtaining a copy of the Unicode data files and any associated

documentation (the "Data Files") or Unicode software and any

associated documentation (the "Software") to deal in the Data Files

or Software without restriction, including without limitation the

rights to use, copy, modify, merge, publish, distribute, and/or sell

copies of the Data Files or Software, and to permit persons to whom

the Data Files or Software are furnished to do so, provided that (a)

the above copyright notice(s) and this permission notice appear with

all copies of the Data Files or Software, (b) both the above

copyright notice(s) and this permission notice appear in associated

documentation, and (c) there is clear notice in each modified Data

File or in the Software as well as in the documentation associated

with the Data File(s) or Software that the data or software has been

modified.

THE DATA FILES AND SOFTWARE ARE PROVIDED "AS IS", WITHOUT WARRANTY

OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE

WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE

COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR

ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY

DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,

WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS

ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE

OF THE DATA FILES OR SOFTWARE.

Except as contained in this notice, the name of a copyright holder

shall not be used in advertising or otherwise to promote the sale,

use or other dealings in these Data Files or Software without prior

written authorization of the copyright holder.

	Introduction
	Error Handling
	Unicode Support
	Interpreter Interface
	Embedding the Interpreter
	Calling the Interpreter
	Loading Files
	Loading Strings

	Intrinsic Functions
	Restrictions on Intrinsic Functions
	Adding a New Intrinsic
	More Complicated Intrinsics

	Intrinsic Variables
	Aggregate Data Objects
	Arrays
	Structures

	Signals
	Exceptions

	Keyboard Interface
	Initializing the Keyboard Interface
	Resetting the Keyboard Interface
	Initializing the SLkp Routines
	Setting the Interrupt Handler
	Reading Keyboard Input with SLang_getkey
	Reading Keyboard Input with SLkp_getkey
	Buffering Input
	Global Variables

	Readline Interface
	Introduction
	Interpreter Interface

	Screen Management
	Initialization
	Resetting SLsmg
	Handling Screen Resize Events
	SLsmg Functions
	Positioning the cursor
	Writing to the Display
	Erasing the Display
	Setting Character Attributes
	Lines and Alternate Character Sets
	Miscellaneous Functions

	Variables
	Hints for using SLsmg

	Signal Functions
	Searching Functions
	Simple Searches
	Regular Expressions

	S-Lang 2 API NEWS and UPGRADE information
	SLang_Error
	SLsmg/SLtt Functions
	SLsearch Functions
	Regular Expression Functions
	Readline Functions
	Preprocessor Interface
	Functions dealing with the interpreter C API
	Modules

	Copyright
	The GNU Public License
	The Unicode Inc. Copyright

